1
|
Andresen E, Flores-Sanchez IJ, Brückner D, Bokhari SNH, Falkenberg G, Küpper H. Sublethal and lethal Cd toxicity in soybean roots specifically affects the metabolome, Cd binding to proteins and cellular distribution of Cd. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130062. [PMID: 36183514 DOI: 10.1016/j.jhazmat.2022.130062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max (L.) Merr.) plants were exposed to various Cd concentrations from background and low non-toxic (0.5-50 nM) via sublethally toxic (< 550 nM) to highly, ultimately lethally toxic (3 µM) concentrations. Plants were cultivated hydroponically for 10 weeks until pod development stage of the control plants. The threshold and mechanism of sublethal Cd toxicity was investigated by metabolomics and metalloproteomics (HPLC-ICP-MS) measuring metal binding to proteins in the harvested roots. Spatial distribution of Cd was revealed by µXRF-CT. Specific binding of Cd to proteins already at 50 nM Cd revealed the likely high-affinity protein binding targets in roots, identified by protein purification from natural abundance. This revealed allantoinase, aquaporins, peroxidases and protein disulfide isomerase as the most likely high-affinity targets of Cd binding. Cd was deposited in cortex cell vacuoles at sublethal and bound to the cell walls of the outer cortex and the vascular bundle at lethal Cd. Cd binding to proteins likely inhibits them, and possibly induces detoxification mechanisms, as verified by metabolomics: allantoic acid and allantoate increased due to sublethal Cd toxicity. Changes of the Cd binding pattern indicated a detoxification strategy at lower Cd, but saturated binding sites at higher Cd concentrations.
Collapse
Affiliation(s)
- Elisa Andresen
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Isvett Josefina Flores-Sanchez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Roret T, Zhang B, Moseler A, Dhalleine T, Gao XH, Couturier J, Lemaire SD, Didierjean C, Johnson MK, Rouhier N. Atypical Iron-Sulfur Cluster Binding, Redox Activity and Structural Properties of Chlamydomonas reinhardtii Glutaredoxin 2. Antioxidants (Basel) 2021; 10:antiox10050803. [PMID: 34069657 PMCID: PMC8161271 DOI: 10.3390/antiox10050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Glutaredoxins (GRXs) are thioredoxin superfamily members exhibiting thiol-disulfide oxidoreductase activity and/or iron-sulfur (Fe-S) cluster binding capacities. These properties are determined by specific structural factors. In this study, we examined the capacity of the class I Chlamydomonas reinhardtii GRX2 recombinant protein to catalyze both protein glutathionylation and deglutathionylation reactions using a redox sensitive fluorescent protein as a model protein substrate. We observed that the catalytic cysteine of the CPYC active site motif of GRX2 was sufficient for catalyzing both reactions in the presence of glutathione. Unexpectedly, spectroscopic characterization of the protein purified under anaerobiosis showed the presence of a [2Fe-2S] cluster despite having a presumably inadequate active site signature, based on past mutational analyses. The spectroscopic characterization of cysteine mutated variants together with modeling of the Fe–S cluster-bound GRX homodimer from the structure of an apo-GRX2 indicate the existence of an atypical Fe–S cluster environment and ligation mode. Overall, the results further delineate the biochemical and structural properties of conventional GRXs, pointing to the existence of multiple factors more complex than anticipated, sustaining the capacity of these proteins to bind Fe–S clusters.
Collapse
Affiliation(s)
- Thomas Roret
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Bo Zhang
- Department of Chemistry and Centre for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA; (B.Z.); (M.K.J.)
| | - Anna Moseler
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Xing-Huang Gao
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
| | - Stéphane D. Lemaire
- Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Université, CNRS, UMR7238, 75006 Paris, France;
- Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, 75006 Paris, France
| | | | - Michael K. Johnson
- Department of Chemistry and Centre for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA; (B.Z.); (M.K.J.)
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (T.R.); (A.M.); (T.D.); (J.C.)
- Correspondence: ; Tel.: +33-372-745-157
| |
Collapse
|
3
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
4
|
Okuda A, Matsusaki M, Masuda T, Morishima K, Sato N, Inoue R, Sugiyama M, Urade R. A novel soybean protein disulphide isomerase family protein possesses dithiol oxidation activity: identification and characterization of GmPDIL6. J Biochem 2020; 168:393-405. [PMID: 32458972 DOI: 10.1093/jb/mvaa058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/02/2020] [Indexed: 01/04/2023] Open
Abstract
Secretory and membrane proteins synthesized in the endoplasmic reticulum (ER) are folded with intramolecular disulphide bonds, viz. oxidative folding, catalysed by the protein disulphide isomerase (PDI) family proteins. Here, we identified a novel soybean PDI family protein, GmPDIL6. GmPDIL6 has a single thioredoxin-domain with a putative N-terminal signal peptide and an active centre (CKHC). Recombinant GmPDIL6 forms various oligomers binding iron. Oligomers with or without iron binding and monomers exhibited a dithiol oxidase activity level comparable to those of other soybean PDI family proteins. However, they displayed no disulphide reductase and extremely low oxidative refolding activity. Interestingly, GmPDIL6 was mainly expressed in the cotyledon during synthesis of seed storage proteins and GmPDIL6 mRNA was up-regulated under ER stress. GmPDIL6 may play a role in the formation of disulphide bonds in nascent proteins for oxidative folding in the ER.
Collapse
Affiliation(s)
- Aya Okuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Motonori Matsusaki
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Taro Masuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Reiko Urade
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Abstract
ABSTRACT
For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.
Collapse
Affiliation(s)
- Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| |
Collapse
|
6
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|