1
|
Tao Y, Zhao Q, Liu F, Liang X, Li Q. Enzymes encapsulated in organic-inorganic hybrid nanoflower with spatial localization for sensitive and colorimetric detection of formate. J Colloid Interface Sci 2024; 672:97-106. [PMID: 38833738 DOI: 10.1016/j.jcis.2024.05.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Formate is an important environmental pollutant, and meanwhile its concentration change is associated with a variety of diseases. Thus, rapid and sensitive detection of formate is critical for the biochemical analysis of complex samples and clinical diagnosis of multiple diseases. Herein, a colorimetric biosensor was constructed based on the cascade catalysis of formate oxidase (FOx) and horseradish peroxidase (HRP). These two enzymes were co-immobilized in Cu3(PO4)2-based hybrid nanoflower with spatial localization, in which FOx and HRP were located in the shell and core of nanoflower, respectively (FOx@HRP). In this system, FOx could catalyze the oxidation of formate to generate H2O2, which was then utilized by HRP to oxidize 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid to yield blue product. Ideal linear correlation could be obtained between the absorbance at 420 nm and formate concentration. Meanwhile, FOx@HRP exhibited excellent detection performance with low limit of detection (6 μM), wide linear detection range (10-900 μM), and favorable specificity, stability and reusability. Moreover, it could be applied in the detection of formate in environmental, food and biological samples with high accuracy. Collectively, FOx@HRP provides a useful strategy for the simple and sensitive detection of formate and is potentially to be used in biochemical analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yu Tao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fengmei Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Wen K, Wang S, Sun Y, Wang M, Zhang Y, Zhu J, Li Q. Mechanistic insights into the conversion of flavin adenine dinucleotide (FAD) to 8-formyl FAD in formate oxidase: a combined experimental and in-silico study. BIORESOUR BIOPROCESS 2024; 11:67. [PMID: 38985371 PMCID: PMC11236828 DOI: 10.1186/s40643-024-00782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Formate oxidase (FOx), which contains 8-formyl flavin adenine dinucleotide (FAD), exhibits a distinct advantage in utilizing ambient oxygen molecules for the oxidation of formic acid compared to other glucose-methanol-choline (GMC) oxidoreductase enzymes that contain only the standard FAD cofactor. The FOx-mediated conversion of FAD to 8-formyl FAD results in an approximate 10-fold increase in formate oxidase activity. However, the mechanistic details underlying the autocatalytic formation of 8-formyl FAD are still not well understood, which impedes further utilization of FOx. In this study, we employ molecular dynamics simulation, QM/MM umbrella sampling simulation, enzyme activity assay, site-directed mutagenesis, and spectroscopic analysis to elucidate the oxidation mechanism of FAD to 8-formyl FAD. Our results reveal that a catalytic water molecule, rather than any catalytic amino acids, serves as a general base to deprotonate the C8 methyl group on FAD, thus facilitating the formation of a quinone-methide tautomer intermediate. An oxygen molecule subsequently oxidizes this intermediate, resulting in a C8 methyl hydroperoxide anion that is protonated and dissociated to form OHC-RP and OH-. During the oxidation of FAD to 8-formyl FAD, the energy barrier for the rate-limiting step is calculated to be 22.8 kcal/mol, which corresponds to the required 14-hour transformation time observed experimentally. Further, the elucidated oxidation mechanism reveals that the autocatalytic formation of 8-formyl FAD depends on the proximal arginine and serine residues, R87 and S94, respectively. Enzymatic activity assay validates that the mutation of R87 to lysine reduces the kcat value to 75% of the wild-type, while the mutation to histidine results in a complete loss of activity. Similarly, the mutant S94I also leads to the deactivation of enzyme. This dependency arises because the nucleophilic OH- group and the quinone-methide tautomer intermediate are stabilized through the noncovalent interaction provided by R87 and S94. These findings not only explain the mechanistic details of each reaction step but also clarify the functional role of R87 and S94 during the oxidative maturation of 8-formyl FAD, thereby providing crucial theoretical support for the development of novel flavoenzymes with enhanced redox properties.
Collapse
Affiliation(s)
- Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Sirui Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yixin Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Mengsong Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
- Center for Supramolecular Chemical Biology, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Das D, Miller AF. A single hydrogen bond that tunes flavin redox reactivity and activates it for modification. Chem Sci 2024; 15:7610-7622. [PMID: 38784750 PMCID: PMC11110160 DOI: 10.1039/d4sc01642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Electron bifurcation produces high-energy products based on less energetic reagents. This feat enables biological systems to exploit abundant mediocre fuel to drive vital but demanding reactions, including nitrogen fixation and CO2 capture. Thus, there is great interest in understanding principles that can be portable to man-made devices. Bifurcating electron transfer flavoproteins (Bf ETFs) employ two flavins with contrasting reactivities to acquire pairs of electrons from a modest reductant, NADH. The bifurcating flavin then dispatches the electrons individually to a high and a low reduction midpoint potential (E°) acceptor, the latter of which captures most of the energy. Maximum efficiency requires that only one electron accesses the exergonic path that will 'pay for' the production of the low-E° product. It is therefore critical that one of the flavins, the 'electron transfer' (ET) flavin, is tuned to execute single-electron (1e-) chemistry only. To learn how, and extract fundamental principles, we systematically altered interactions with the ET-flavin O2 position. Removal of a single hydrogen bond (H-bond) disfavored the formation of the flavin anionic semiquinone (ASQ) relative to the oxidized (OX) state, lowering by 150 mV and retuning the flavin's tendency for 1e-vs. 2e- reactivity. This was achieved by replacing conserved His 290 with Phe, while also replacing the supporting Tyr 279 with Ile. Although this variant binds oxidized FADs at 90% the WT level, the ASQ state of the ET-flavin is not stable in the absence of H290's H-bond, and dissociates, in contrast to the WT. Removal of this H-bond also altered the ET-flavin's covalent chemistry. While the WT ETF accumulates modified flavins whose formation is believed to rely on an anionic paraquinone methide intermediate, the FADs of the H-bond lacking variant remain unchanged over weeks. Hence the variant that destabilizes the anionic semiquinone also suppresses the anionic intermediate in flavin modification, verifying electronic similarities between these two species. These correlations suggest that the H-bond that stabilizes the crucial flavin ASQ also promotes flavin modification. The two effects may indeed be inseparable, as a Jekyll and Hydrogen bond.
Collapse
Affiliation(s)
- Debarati Das
- Department of Chemistry, University of Kentucky Lexington Kentucky USA
| | | |
Collapse
|
4
|
Quaye JA, Gadda G. The Pseudomonas aeruginosa PAO1 metallo flavoprotein d-2-hydroxyglutarate dehydrogenase requires Zn 2+ for substrate orientation and activation. J Biol Chem 2023; 299:103008. [PMID: 36775127 PMCID: PMC10034468 DOI: 10.1016/j.jbc.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate (D2HG) dehydrogenase (PaD2HGDH) oxidizes D2HG to 2-ketoglutarate during the vital l-serine biosynthesis and is a potential therapeutic target against P. aeruginosa. PaD2HGDH, which oxidizes d-malate as an alternative substrate, has been demonstrated to be a metallo flavoprotein that requires Zn2+ for activity. However, the role of Zn2+ in the enzyme has not been elucidated, making it difficult to rationalize why nature employs both a redox center and a metal ion for catalysis in PaD2HGDH and other metallo flavoenzymes. In this study, recombinant His-tagged PaD2HGDH was purified to high levels in the presence of Zn2+ or Co2+ to investigate the metal's role in catalysis. We found that the flavin reduction step was reversible and partially rate limiting for the enzyme's turnover at pH 7.4 with either D2HG or d-malate with similar rate constants for both substrates, irrespective of whether Zn2+ or Co2+ was bound to the enzyme. The steady-state pL profiles of the kcat and kcat/Km values with d-malate demonstrate that Zn2+ mediates the activation of water coordinated to the metal. Our data are consistent with a dual role for the metal, which orients the hydroxy acid substrate in the enzyme's active site and rapidly deprotonates the substrate to yield an alkoxide species for hydride transfer to the flavin. Thus, we propose a catalytic mechanism for PaD2HGDH oxidation that establishes Zn2+ as a cofactor required for substrate orientation and activation during enzymatic turnover.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Unusual reactivity of a flavin in a bifurcating electron-transferring flavoprotein leads to flavin modification and a charge-transfer complex. J Biol Chem 2022; 298:102606. [PMID: 36257407 PMCID: PMC9713284 DOI: 10.1016/j.jbc.2022.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
From the outset, canonical electron transferring flavoproteins (ETFs) earned a reputation for containing modified flavin. We now show that modification occurs in the recently recognized bifurcating (Bf) ETFs as well. In Bf ETFs, the 'electron transfer' (ET) flavin mediates single electron transfer via a stable anionic semiquinone state, akin to the FAD of canonical ETFs, whereas a second flavin mediates bifurcation (the Bf FAD). We demonstrate that the ET FAD undergoes transformation to two different modified flavins by a sequence of protein-catalyzed reactions that occurs specifically in the ET site, when the enzyme is maintained at pH 9 in an amine-based buffer. Our optical and mass spectrometric characterizations identify 8-formyl flavin early in the process and 8-amino flavins (8AFs) at later times. The latter have not previously been documented in an ETF to our knowledge. Mass spectrometry of flavin products formed in Tris or bis-tris-aminopropane solutions demonstrates that the source of the amine adduct is the buffer. Stepwise reduction of the 8AF demonstrates that it can explain a charge transfer band observed near 726 nm in Bf ETF, as a complex involving the hydroquinone state of the 8AF in the ET site with the oxidized state of unmodified flavin in the Bf site. This supports the possibility that Bf ETF can populate a conformation enabling direct electron transfer between its two flavins, as has been proposed for cofactors brought together in complexes between ETF and its partner proteins.
Collapse
|
6
|
Mohamed-Raseek N, Miller AF. Contrasting roles for two conserved arginines: stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins. J Biol Chem 2022; 298:101733. [PMID: 35176283 PMCID: PMC8958531 DOI: 10.1016/j.jbc.2022.101733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023] Open
Abstract
Bifurcating electron transfer flavoproteins (Bf ETFs) are important redox enzymes that contain two flavin adenine dinucleotide (FAD) cofactors, with contrasting reactivities and complementary roles in electron bifurcation. However, for both the “electron transfer” (ET) and the “bifurcating” (Bf) FADs, the only charged amino acid within 5 Å of the flavin is a conserved arginine (Arg) residue. To understand how the two sites produce different reactivities utilizing the same residue, we investigated the consequences of replacing each of the Arg residues with lysine, glutamine, histidine, or alanine. We show that absence of a positive charge in the ET site diminishes accumulation of the anionic semiquinone (ASQ) that enables the ET flavin to act as a single electron carrier, due to depression of the oxidized versus. ASQ reduction midpoint potential, E°OX/ASQ. Perturbation of the ET site also affected the remote Bf site, whereas abrogation of Bf FAD binding accelerated chemical modification of the ET flavin. In the Bf site, removal of the positive charge impaired binding of FAD or AMP, resulting in unstable protein. Based on pH dependence, we propose that the Bf site Arg interacts with the phosphate(s) of Bf FAD or AMP, bridging the domain interface via a conserved peptide loop (“zipper”) and favoring nucleotide binding. We further propose a model that rationalizes conservation of the Bf site Arg even in non-Bf ETFs, as well as AMP's stabilizing role in the latter, and provides a mechanism for coupling Bf flavin redox changes to domain-scale motion.
Collapse
|
7
|
Kar RK, Chasen S, Mroginski MA, Miller AF. Tuning the Quantum Chemical Properties of Flavins via Modification at C8. J Phys Chem B 2021; 125:12654-12669. [PMID: 34784473 DOI: 10.1021/acs.jpcb.1c07306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavins are central to countless enzymes but display different reactivities depending on their environments. This is understood to reflect modulation of the flavin electronic structure. To understand changes in orbital natures, energies, and correlation over the ring system, we begin by comparing seven flavin variants differing at C8, exploiting their different electronic spectra to validate quantum chemical calculations. Ground state calculations replicate a Hammett trend and reveal the significance of the flavin π-system. Comparison of higher-level theories establishes CC2 and ACD(2) as methods of choice for characterization of electronic transitions. Charge transfer character and electron correlation prove responsive to the identity of the substituent at C8. Indeed, bond length alternation analysis demonstrates extensive conjugation and delocalization from the C8 position throughout the ring system. Moreover, we succeed in replicating a particularly challenging UV/Vis spectrum by implementing hybrid QM/MM in explicit solvents. Our calculations reveal that the presence of nonbonding lone pairs correlates with the change in the UV/Vis spectrum observed when the 8-methyl is replaced by NH2, OH, or SH. Thus, our computations offer routes to understanding the spectra of flavins with different modifications. This is a first step toward understanding how the same is accomplished by different binding environments.
Collapse
Affiliation(s)
- Rajiv K Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Sam Chasen
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maria-Andrea Mroginski
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anne-Frances Miller
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.,Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
8
|
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021; 54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Acetic acid bacteria (AAB) are a group of bacteria that can oxidize many substrates such as alcohols and sugar alcohols and play important roles in industrial biotechnology. A majority of industrial processes that involve AAB are related to their dehydrogenases, including PQQ/FAD-dependent membrane-bound dehydrogenases and NAD(P)+-dependent cytoplasmic dehydrogenases. These cofactor-dependent dehydrogenases must effectively regenerate their cofactors in order to function continuously. For PQQ, FAD and NAD(P)+ alike, regeneration is directly or indirectly related to the electron transport chain (ETC) of AAB, which plays an important role in energy generation for aerobic cell growth. Furthermore, in changeable natural habitats, ETC components of AAB can be regulated so that the bacteria survive in different environments. Herein, the progressive cascade in an application of AAB, including key dehydrogenases involved in the application, regeneration of dehydrogenase cofactors, ETC coupling with cofactor regeneration and ETC regulation, is systematically reviewed and discussed. As they have great application value, a deep understanding of the mechanisms through which AAB function will not only promote their utilization and development but also provide a reference for engineering of other industrial strains.
Collapse
Affiliation(s)
- Zhijie Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Nintzel FEH, Wu Y, Planchestainer M, Held M, Alcalde M, Hollmann F. An alginate-confined peroxygenase-CLEA for styrene epoxidation. Chem Commun (Camb) 2021; 57:5766-5769. [PMID: 33987632 PMCID: PMC8191455 DOI: 10.1039/d1cc01868j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Oxyfunctionalisation reactions in neat substrate still pose a challenge for biocatalysis. Here, we report an alginate-confined peroxygenase-CLEA to catalyse the enantioselective epoxidation of cis-β-methylstyrene in a solvent-free reaction system achieving turnover numbers of 96 000 for the biocatalyst and epoxide concentrations of 48 mM.
Collapse
Affiliation(s)
- Friederike E H Nintzel
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Yinqi Wu
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Matteo Planchestainer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (CSIC), Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
10
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
11
|
Duan HD, Mohamed-Raseek N, Miller AF. Spectroscopic evidence for direct flavin-flavin contact in a bifurcating electron transfer flavoprotein. J Biol Chem 2020; 295:12618-12634. [PMID: 32661195 DOI: 10.1074/jbc.ra120.013174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
A remarkable charge transfer (CT) band is described in the bifurcating electron transfer flavoprotein (Bf-ETF) from Rhodopseudomonas palustris (RpaETF). RpaETF contains two FADs that play contrasting roles in electron bifurcation. The Bf-FAD accepts electrons pairwise from NADH, directs one to a lower-reduction midpoint potential (E°) carrier, and the other to the higher-E° electron transfer FAD (ET-FAD). Previous work noted that a CT band at 726 nm formed when ET-FAD was reduced and Bf-FAD was oxidized, suggesting that both flavins participate. However, existing crystal structures place them too far apart to interact directly. We present biochemical experiments addressing this conundrum and elucidating the nature of this CT species. We observed that RpaETF missing either FAD lacked the 726 nm band. Site-directed mutagenesis near either FAD produced altered yields of the CT species, supporting involvement of both flavins. The residue substitutions did not alter the absorption maximum of the signal, ruling out contributions from residue orbitals. Instead, we propose that the residue identities modulate the population of a protein conformation that brings the ET-flavin and Bf-flavin into direct contact, explaining the 726 nm band based on a CT complex of reduced ET-FAD and oxidized Bf-FAD. This is corroborated by persistence of the 726 nm species during gentle protein denaturation and simple density functional theory calculations of flavin dimers. Although such a CT complex has been demonstrated for free flavins, this is the first observation of such, to our knowledge, in an enzyme. Thus, Bf-ETFs may optimize electron transfer efficiency by enabling direct flavin-flavin contact.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
12
|
Willot SJ, Hoang MD, Paul CE, Alcalde M, Arends IWCE, Bommarius AS, Bommarius B, Hollmann F. FOx News: Towards Methanol‐driven Biocatalytic Oxyfunctionalisation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien J.‐P. Willot
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Manh Dat Hoang
- Institute of Biochemical Engineering Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis Institute of Catalysis, CSIC Madrid Spain
| | | | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| |
Collapse
|
13
|
Toplak M, Brunner J, Tabib CR, Macheroux P. Closing the gap: yeast electron-transferring flavoprotein links the oxidation of d-lactate and d-α-hydroxyglutarate to energy production via the respiratory chain. FEBS J 2019; 286:3611-3628. [PMID: 31081204 PMCID: PMC6771786 DOI: 10.1111/febs.14924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023]
Abstract
Electron-transferring flavoproteins (ETFs) have been found in all kingdoms of life, mostly assisting in shuttling electrons to the respiratory chain for ATP production. While the human (h) ETF has been studied in great detail, very little is known about the biochemical properties of the homologous protein in the model organism Saccharomyces cerevisiae (yETF). In view of the absence of client dehydrogenases, for example, the acyl-CoA dehydrogenases involved in the β-oxidation of fatty acids, d-lactate dehydrogenase 2 (Dld2) appeared to be the only relevant enzyme that is serviced by yETF for electron transfer to the mitochondrial electron transport chain. However, this hypothesis was never tested experimentally. Here, we report the biochemical properties of yETF and Dld2 as well as the electron transfer reaction between the two proteins. Our study revealed that Dld2 oxidizes d-α-hydroxyglutarate more efficiently than d-lactate exhibiting kcatapp /KMapp values of 1200 ± 300 m-1 ·s-1 and 11 ± 2 m-1 ·s-1 , respectively. As expected, substrate-reduced Dld2 very slowly reacted with oxygen or the artificial electron acceptor 2,6-dichlorophenol indophenol. However, photoreduced Dld2 was rapidly reoxidized by oxygen, suggesting that the reaction products, that is, α-ketoglutarate and pyruvate, 'lock' the reduced enzyme in an unreactive state. Interestingly, however, we could demonstrate that substrate-reduced Dld2 rapidly transfers electrons to yETF. Therefore, we conclude that the formation of a product-reduced Dld2 complex suppresses electron transfer to dioxygen but favors the rapid reduction in yETF, thus preventing the loss of electrons and the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Marina Toplak
- Institute of BiochemistryGraz University of TechnologyAustria
| | - Julia Brunner
- Institute of BiochemistryGraz University of TechnologyAustria
| | | | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyAustria
| |
Collapse
|
14
|
Doubayashi D, Oki M, Mikami B, Uchida H. The microenvironment surrounding FAD mediates its conversion to 8-formyl-FAD in Aspergillus oryzae RIB40 formate oxidase. J Biochem 2019; 166:67-75. [PMID: 30715389 DOI: 10.1093/jb/mvz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022] Open
Abstract
Aspergillus oryzae RIB40 formate oxidase has Arg87 and Arg554 near the formyl group and O(4) atom of 8-formyl-flavin adenine dinucleotide (FAD), respectively, with Asp396 neighbouring Arg554. Herein, we probed the roles of these three residues in modification of FAD to 8-formyl-FAD. Replacement of Arg87 or Arg554 with Lys or Ala decreased and abolished the modification, respectively. Replacement of Asp396 with Ala or Asn lowered the modification rate. The observation of unusual effects of maintaining pH 7.0 on the modification in R87K, R554K and D396 variants indicates initial and subsequent processes with different pH dependencies. Comparison of the initial process at pH 4.5 and 7.0 suggests that the microenvironment around Arg87 and the protonation state of Asp396 affect the initial process in the native enzyme. Comparison of the crystal structures of native and R554 variants showed that the replacements had minimal effect on catalytic site structure. The positively charged Arg87 might contribute to the formation of an anionic quinone-methide tautomer intermediate, while the positively charged Arg554, in collaboration with the negatively charged Asp396, might stabilize this intermediate and form a hydrogen bonding network with the N(5)/O(4) region, thereby facilitating efficient FAD modification.
Collapse
Affiliation(s)
- Daiju Doubayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Bunzo Mikami
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Ujishi, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| |
Collapse
|
15
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H 2 O 2 -Dependent Biocatalytic Oxidation Reactions. Angew Chem Int Ed Engl 2019; 58:7873-7877. [PMID: 30945422 PMCID: PMC6563469 DOI: 10.1002/anie.201902380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/29/2022]
Abstract
An increasing number of biocatalytic oxidation reactions rely on H2 O2 as a clean oxidant. The poor robustness of most enzymes towards H2 O2 , however, necessitates more efficient systems for in situ H2 O2 generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H2 O2 -dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.
Collapse
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
- Chemistry DepartmentFaculty of ScienceSohag UniversitySohag82524Egypt
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC28049MadridSpain
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive, N.W.AtlantaGA30332USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| |
Collapse
|
16
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formiat‐Oxidase (FOx) aus
Aspergillus oryzae
: ein Katalysator für verschiedene H
2
O
2
‐abhängige biokatalytische Oxidationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
- Chemistry DepartmentFaculty of ScienceSohag University Sohag 82524 Ägypten
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC 28049 Madrid Spanien
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology 901 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| |
Collapse
|
17
|
On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods Enzymol 2019; 620:115-143. [PMID: 31072484 DOI: 10.1016/bs.mie.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This account describes the application of kinetic isotope effects (KIEs) to investigate the mechanistic properties of flavin dependent enzymes. Assays can be conducted during steady-state catalytic turnover of the flavoenzyme with its substrate or by using rapid-kinetic techniques to measure either the reductive or oxidative half-reactions of the enzyme. Great care should be taken to ensure that the observed effects are due to isotopic substitution and not other factors such as pH effects or changes in the solvent viscosity of the reaction mixture. Different types of KIEs are described along with a physical description of their origins and the unique information each can provide about the mechanism of an enzyme. Detailed experimental techniques are outlined with special emphasis on the proper controls and data analysis that must be carried out to avoid erroneous conclusions. Examples are provided for each type of KIE measurement from references in the literature. It is our hope that this article will clarify any confusion concerning the utility of KIEs in the study of flavoprotein mechanism and encourage their use by the community.
Collapse
|
18
|
Nohr D, Weber S, Schleicher E. EPR spectroscopy on flavin radicals in flavoproteins. Methods Enzymol 2019; 620:251-275. [PMID: 31072489 DOI: 10.1016/bs.mie.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavin semiquinone redox states are important intermediates in a broad variety of reactions catalyzed by flavoproteins. As paramagnetic states they can be favorably probed by EPR spectroscopy in all its flavors. This review summarizes recent results in the characterization of flavin radicals. On the one hand, flavin radical states, e.g., trapped as reaction intermediates, can be characterized using modern pulsed EPR methods to unravel their electronic structure and to gain information about the surrounding environment and its changes on protein action. On the other hand, short-lived intermediate flavin radical states generated, e.g., photochemically, can be followed by time-resolved EPR, which allows a direct tracking of flavin-dependent reactions with a temporal resolution reaching nanoseconds.
Collapse
Affiliation(s)
- Daniel Nohr
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
|
20
|
Guarneri A, van Berkel WJ, Paul CE. Alternative coenzymes for biocatalysis. Curr Opin Biotechnol 2019; 60:63-71. [PMID: 30711813 DOI: 10.1016/j.copbio.2019.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem Jh van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
21
|
Leys D. Flavin metamorphosis: cofactor transformation through prenylation. Curr Opin Chem Biol 2018; 47:117-125. [PMID: 30326424 DOI: 10.1016/j.cbpa.2018.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022]
Abstract
Prenylated flavin (prFMN) is a recently discovered cofactor that underpins catalysis in the ubiquitous microbial UbiDX system. UbiX acts as a flavin prenyltransferase while UbiD is a prFMN-dependent reversible (de)carboxylase. The extensive modification of flavin by prenylation, and the consecutive oxidation to the prFMNiminium azomethine ylide, leads to cofactor metamorphosis. While prFMN is no longer able to perform N5-based classical flavin chemistry, it is capable of forming cycloadducts with dipolarophiles, long-lived C4a-based radical species as well as undergoing extensive light driven isomerization. An ever-expanding range of distinct prFMN forms hints at the possibility of novel prFMN driven biochemistry yet to be discovered.
Collapse
Affiliation(s)
- David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Robbins JM, Geng J, Barry BA, Gadda G, Bommarius AS. Photoirradiation Generates an Ultrastable 8-Formyl FAD Semiquinone Radical with Unusual Properties in Formate Oxidase. Biochemistry 2018; 57:5818-5826. [PMID: 30226367 DOI: 10.1021/acs.biochem.8b00571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate oxidase (FOX) was previously shown to contain a noncovalently bound 8-formyl FAD (8-fFAD) cofactor. However, both the absorption spectra and the kinetic parameters previously reported for FOX are inconsistent with more recent reports. The ultraviolet-visible (UV-vis) absorption spectrum reported in early studies closely resembles the spectra observed for protein-bound 8-formyl flavin semiquinone species, thus suggesting FOX may be photosensitive. Therefore, the properties of dark and light-exposed FOX were investigated using steady-state kinetics and site-directed mutagenesis analysis along with inductively coupled plasma optical emission spectroscopy, UV-vis absorption spectroscopy, circular dichroism spectroscopy, liquid chromatography and mass spectrometry, and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, these experimental results demonstrate that FOX is deactivated in the presence of light through generation of an oxygen stable, anionic (red) 8-fFAD semiquinone radical capable of persisting either in an aerobic environment for multiple weeks or in the presence of a strong reducing agent like sodium dithionite. Herein, we study the photoinduced formation of the 8-fFAD semiquinone radical in FOX and report the first EPR spectrum of this radical species. The stability of the 8-fFAD semiquinone radical suggests FOX to be a model enzyme for probing the structural and mechanistic features involved in stabilizing flavin semiquinone radicals. It is likely that the photoinduced formation of a stable 8-fFAD semiquinone radical is a defining characteristic of 8-formyl flavin-dependent enzymes. Additionally, a better understanding of the radical stabilization process may yield a FOX enzyme with more robust activity and broader industrial usefulness.
Collapse
Affiliation(s)
- John M Robbins
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0100 , United States.,Engineered Biosystems Building (EBB) , Georgia Institute of Technology , Atlanta , Georgia 30332-2000 , United States
| | - Jiafeng Geng
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| | - Giovanni Gadda
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Center for Biotechnology and Drug Design , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Department of Biology , Georgia State University , Atlanta , Georgia 30302-3965 , United States
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0100 , United States.,Engineered Biosystems Building (EBB) , Georgia Institute of Technology , Atlanta , Georgia 30332-2000 , United States.,School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| |
Collapse
|
23
|
Robbins JM, Bommarius AS, Gadda G. Mechanistic studies of formate oxidase from Aspergillus oryzae : A novel member of the glucose-Methanol-choline oxidoreductase enzyme superfamily that oxidizes carbon acids. Arch Biochem Biophys 2018; 643:24-31. [DOI: 10.1016/j.abb.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|
24
|
Augustin P, Toplak M, Fuchs K, Gerstmann EC, Prassl R, Winkler A, Macheroux P. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein. J Biol Chem 2018; 293:2829-2840. [PMID: 29301933 PMCID: PMC5827430 DOI: 10.1074/jbc.ra117.000846] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria.
Collapse
Affiliation(s)
- Peter Augustin
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | - Katharina Fuchs
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | | | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II.
| |
Collapse
|