1
|
Jia T, Guo D, Han Y, Zhou D. Biosynthesis of UDP-2-acetamido-4-formamido-2,4,6-trideoxy-hexose by WekG, WekE, WekF, and WekD: Enzymes in the Wek pathway responsible for O-antigen Assembly in Escherichia coli O119. Carbohydr Res 2021; 507:108388. [PMID: 34271479 DOI: 10.1016/j.carres.2021.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
Considering the importance of bacterial glycoconjugates on virulence and host mimicry, there is a need to better understand the biosynthetic pathways of these unusual sugars to identify critical targets involved in bacterial pathogenesis. In this report, we describe the cloning, overexpression, purification, and biochemical characterization of the four central enzymes in the biosynthesis pathway for UDP-2-acetamido-4-formamido-2,4,6-trideoxy-hexose, WekG, WekE, WekF, and WekD. Product peaks from enzyme-substrate reactions were detected by using a combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS). Putative enzyme assignments were provided by protein sequence analysis. Combined with the mass spectrometric characterization of pathway intermediates, we propose a biosynthetic pathway for UDP-2-acetamido-4-formamido-2,4,6-trideoxy-hexose. This process involves C-4, C-6 dehydration, C-4 amination, and formylation. CID-ESI-MSn result confirmed that the final product is a 4 formamido derivative too rather than the 3 formamido derivatives as reported earlier.
Collapse
Affiliation(s)
- Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Dan Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yanfang Han
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Dawei Zhou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Microbial Functional Genomics, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Heisdorf CJ, Griffiths WA, Thoden JB, Holden HM. Investigation of the enzymes required for the biosynthesis of an unusual formylated sugar in the emerging human pathogen Helicobacter canadensis. Protein Sci 2021; 30:2144-2160. [PMID: 34379357 DOI: 10.1002/pro.4169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023]
Abstract
It is now well established that the Gram-negative bacterium, Helicobacter pylori, causes gastritis in humans. In recent years, it has become apparent that the so-called non-pylori Helicobacters, normally infecting pigs, cats, and dogs, may also be involved in human pathology via zoonotic transmission. Indeed, more than 30 species of non-pylori Helicobacters have been identified thus far. One such organism is Helicobacter canadensis, an emerging pathogen whose genome sequence was published in 2009. Given our long-standing interest in the biosynthesis of N-formylated sugars found in the O-antigens of some Gram-negative bacteria, we were curious as to whether H. canadensis produces such unusual carbohydrates. Here, we demonstrate using both biochemical and structural techniques that the proteins encoded by the HCAN_0198, HCAN_0204, and HCAN_0200 genes in H. canadensis, correspond to a 3,4-ketoisomerase, a pyridoxal 5'-phosphate aminotransferase, and an N-formyltransferase, respectively. For this investigation, five high-resolution X-ray structures were determined and the kinetic parameters for the isomerase and the N-formyltransferase were measured. Based on these data, we suggest that the unusual sugar, 3-formamido-3,6-dideoxy-d-glucose, will most likely be found in the O-antigen of H. canadensis. Whether N-formylated sugars found in the O-antigen contribute to virulence is presently unclear, but it is intriguing that they have been observed in such pathogens as Francisella tularensis, Mycobacterium tuberculosis, and Brucella melitensis.
Collapse
Affiliation(s)
- Colton J Heisdorf
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - William A Griffiths
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Girardi NM, Thoden JB, Holden HM. Misannotations of the genes encoding sugar N-formyltransferases. Protein Sci 2020; 29:930-940. [PMID: 31867814 PMCID: PMC7096703 DOI: 10.1002/pro.3807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Tens of thousands of bacterial genome sequences are now known due to the development of rapid and inexpensive sequencing technologies. An important key in utilizing these vast amounts of data in a biologically meaningful way is to infer the function of the proteins encoded in the genomes via bioinformatics techniques. Whereas these approaches are absolutely critical to the annotation of gene function, there are still issues of misidentifications, which must be experimentally corrected. For example, many of the bacterial DNA sequences encoding sugar N-formyltransferases have been annotated as l-methionyl-tRNA transferases in the databases. These mistakes may be due in part to the fact that until recently the structures and functions of these enzymes were not well known. Herein we describe the misannotation of two genes, WP_088211966.1 and WP_096244125.1, from Shewanella spp. and Pseudomonas congelans, respectively. Although the proteins encoded by these genes were originally suggested to function as l-methionyl-tRNA transferases, we demonstrate that they actually catalyze the conversion of dTDP-4-amino-4,6-dideoxy-d-glucose to dTDP-4-formamido-4,6-dideoxy-d-glucose utilizing N10 -formyltetrahydrofolate as the carbon source. For this analysis, the genes encoding these enzymes were cloned and the corresponding proteins purified. X-ray structures of the two proteins were determined to high resolution and kinetic analyses were conducted. Both enzymes display classical Michaelis-Menten kinetics and adopt the characteristic three-dimensional structural fold previously observed for other sugar N-formyltransferases. The results presented herein will aid in the future annotation of these fascinating enzymes.
Collapse
|
4
|
Hofmeister DL, Thoden JB, Holden HM. Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis. Protein Sci 2019; 28:707-716. [PMID: 30666752 PMCID: PMC6423709 DOI: 10.1002/pro.3577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
Pantoea ananatis is a Gram-negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to function as non-pathogenic plant growth promoting organisms. To date, the factors that determine pathogenicity or lack thereof between the various strains are not well understood. All P. ananatis strains contain lipopolysaccharides, which differ with respect to the identities of their associated sugars. Given our research interest on the presence of the unusual sugar, 4-formamido-4,6-dideoxy-d-glucose, found on the lipopolysaccharides of Campylobacter jejuni and Francisella tularensis, we were curious as to whether other bacteria have the appropriate biosynthetic machinery to produce these unique carbohydrates. Four enzymes are typically required for their biosynthesis: a thymidylyltransferase, a 4,6-dehydratase, an aminotransferase, and an N-formyltransferase. Here, we report that the gene SAMN03097714_1080 from the P. ananatis strain NFR11 does, indeed, encode for an N-formyltransferase, hereafter referred to as PA1080c. Our kinetic analysis demonstrates that PA1080c displays classical Michaelis-Menten kinetics with dTDP-4-amino-4,6-dideoxy-d-glucose as the substrate and N10 -formyltetrahydrofolate as the carbon source. In addition, the X-ray structure of PA1080c, determined to 1.7 Å resolution, shows that the enzyme adopts the molecular architecture observed for other sugar N-formyltransferases. Analysis of the P. ananatis NFR11 genome suggests that the three other enzymes necessary for N-formylated sugar biosynthesis are also present. Intriguingly, those strains of P. ananatis that are non-pathogenic apparently do not contain these genes.
Collapse
Affiliation(s)
| | - James B. Thoden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsin, 53706
| | - Hazel M. Holden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsin, 53706
| |
Collapse
|
5
|
Reimer JM, Harb I, Ovchinnikova OG, Jiang J, Whitfield C, Schmeing TM. Structural Insight into a Novel Formyltransferase and Evolution to a Nonribosomal Peptide Synthetase Tailoring Domain. ACS Chem Biol 2018; 13:3161-3172. [PMID: 30346688 DOI: 10.1021/acschembio.8b00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) increase the chemical diversity of their products by acquiring tailoring domains. Linear gramicidin synthetase starts with a tailoring formylation (F) domain, which likely originated from a sugar formyltransferase (FT) gene. Here, we present studies on an Anoxybacillus kamchatkensis sugar FT representative of the prehorizontal gene transfer FT. Gene cluster analysis reveals that this FT acts on a UDP-sugar in a novel pathway for synthesis of a 7-formamido derivative of CMP-pseudaminic acid. We recapitulate the pathway up to and including the formylation step in vitro, experimentally demonstrating the role of the FT. We also present X-ray crystal structures of the FT alone and with ligands, which unveil contrasts with other structurally characterized sugar FTs and show close structural similarity with the F domain. The structures reveal insights into the adaptations that were needed to co-opt and evolve a sugar FT into a functional and useful NRPS domain.
Collapse
Affiliation(s)
- Janice M. Reimer
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Ingrid Harb
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jessie Jiang
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
6
|
Brown HA, Vinogradov E, Gilbert M, Holden HM. The Mycobacterium tuberculosis complex has a pathway for the biosynthesis of 4-formamido-4,6-dideoxy-d-glucose. Protein Sci 2018; 27:1491-1497. [PMID: 29761597 DOI: 10.1002/pro.3443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Michel Gilbert
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
7
|
Dunsirn MM, Thoden JB, Gilbert M, Holden HM. Biochemical Investigation of Rv3404c from Mycobacterium tuberculosis. Biochemistry 2017; 56:3818-3825. [PMID: 28665588 DOI: 10.1021/acs.biochem.7b00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has attracted research attention as a potential virulence factor for over 12 years. Here we demonstrate that Rv3404c functions as a sugar N-formyltransferase that converts dTDP-4-amino-4,6-dideoxyglucose into dTDP-4-formamido-4,6-dideoxyglucose using N10-formyltetrahydrofolate as the carbon source. Kinetic analyses demonstrate that Rv3404c displays a significant catalytic efficiency of 1.1 × 104 M-1 s-1. In addition, we report the X-ray structure of a ternary complex of Rv3404c solved in the presence of N5-formyltetrahydrofolate and dTDP-4-amino-4,6-dideoxyglucose. The final model of Rv3404c was refined to an overall R-factor of 16.8% at 1.6 Å resolution. The results described herein are especially intriguing given that there have been no published reports of N-formylated sugars associated with M. tuberculosis. The data thus provide a new avenue of research into this fascinating, yet deadly, organism that apparently has been associated with human infection since ancient times.
Collapse
Affiliation(s)
- Murray M Dunsirn
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Michel Gilbert
- National Research Council Canada, Human Health Therapeutics, Ottawa, Ontario K1A 0R6, Canada
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|