1
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
Allert MJ, Kumar S, Wang Y, Beese LS, Hellinga HW. Accurate Identification of Periplasmic Urea-binding Proteins by Structure- and Genome Context-assisted Functional Analysis. J Mol Biol 2024; 436:168780. [PMID: 39241982 DOI: 10.1016/j.jmb.2024.168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
ABC transporters are ancient and ubiquitous nutrient transport systems in bacteria and play a central role in defining lifestyles. Periplasmic solute-binding proteins (SBPs) are components that deliver ligands to their translocation machinery. SBPs have diversified to bind a wide range of ligands with high specificity and affinity. However, accurate assignment of cognate ligands remains a challenging problem in SBPs. Urea metabolism plays an important role in the nitrogen cycle; anthropogenic sources account for more than half of global nitrogen fertilizer. We report identification of urea-binding proteins within a large SBP sequence family that encodes diverse functions. By combining genetic linkage between SBPs, ABC transporter components, enzymes or transcription factors, we accurately identified cognate ligands, as we verified experimentally by biophysical characterization of ligand binding and crystallographic determination of the urea complex of a thermostable urea-binding homolog. Using three-dimensional structure information, these functional assignments were extrapolated to other members in the sequence family lacking genetic linkage information, which revealed that only a fraction bind urea. Using the same combined approaches, we also inferred that other family members bind various short-chain amides, aliphatic amino acids (leucine, isoleucine, valine), γ-aminobutyrate, and as yet unknown ligands. Comparative structural analysis revealed structural adaptations that encode diversification in these SBPs. Systematic assignment of ligands to SBP sequence families is key to understanding bacterial lifestyles, and also provides a rich source of biosensors for clinical and environmental analysis, such as the thermostable urea-binding protein identified here.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, MO 63110, USA.
| | - You Wang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Ford BA, Ranjit P, Mabbutt BC, Paulsen IT, Shah BS. ProX from marine Synechococcus spp. show a sole preference for glycine-betaine with differential affinity between ecotypes. Environ Microbiol 2022; 24:6071-6085. [PMID: 36054310 PMCID: PMC10087775 DOI: 10.1111/1462-2920.16168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.
Collapse
Affiliation(s)
- Benjamin A Ford
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
East NJ, Clifton BE, Jackson CJ, Kaczmarski JA. The role of oligomerization in the optimization of cyclohexadienyl dehydratase conformational dynamics and catalytic activity. Protein Sci 2022; 31:e4510. [PMID: 36382881 PMCID: PMC9703590 DOI: 10.1002/pro.4510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 04/19/2025]
Abstract
The emergence of oligomers is common during the evolution and diversification of protein families, yet the selective advantage of oligomerization is often cryptic or unclear. Oligomerization can involve the formation of isologous head-to-head interfaces (e.g., in symmetrical dimers) or heterologous head-to-tail interfaces (e.g., in cyclic complexes), the latter of which is less well studied and understood. In this work, we retrace the emergence of the trimeric form of cyclohexadienyl dehydratase from Pseudomonas aeruginosa (PaCDT) by introducing residues that form the PaCDT trimer-interfaces into AncCDT-5 (a monomeric reconstructed ancestor of PaCDT). We find that single interface mutations can switch the oligomeric state of the variants and that trimerization corresponds with a reduction in the KM value of the enzyme from a promiscuous level to the physiologically relevant range. In addition, we find that removal of a C-terminal extension present in PaCDT leads to a variant with reduced catalytic activity, indicating that the C-terminal region has a role in tuning enzymatic activity. We show that these observations can be rationalized at the structural and dynamic levels, with trimerization and C-terminal extension leading to reduced sampling of non-catalytic conformational substates in molecular dynamics simulations. Overall, this work provides insight into how neutral sampling of distinct oligomeric states along an evolutionary trajectory can facilitate the evolution and optimization of enzyme function.
Collapse
Affiliation(s)
- Nicholas J. East
- ARC Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralia
- Research School of BiologyAustralian National UniversityActonAustralian Capital TerritoryAustralia
| | - Ben E. Clifton
- Protein Engineering and Evolution UnitOkinawa Institute of Science and TechnologyOkinawaJapan
| | - Colin J. Jackson
- ARC Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralia
- Research School of BiologyAustralian National UniversityActonAustralian Capital TerritoryAustralia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of ChemistryAustralian National UniversityActonAustralian Capital TerritoryAustralia
| | - Joe A. Kaczmarski
- ARC Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralia
- Research School of BiologyAustralian National UniversityActonAustralian Capital TerritoryAustralia
| |
Collapse
|
5
|
Ortega Á, Matilla MA, Krell T. The Repertoire of Solute-Binding Proteins of Model Bacteria Reveals Large Differences in Number, Type, and Ligand Range. Microbiol Spectr 2022; 10:e0205422. [PMID: 36121253 PMCID: PMC9602780 DOI: 10.1128/spectrum.02054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022] Open
Abstract
Solute-binding proteins (SBPs) are of central physiological relevance for bacteria. They are located in the extracytosolic space, where they present substrates to transporters but also stimulate different types of transmembrane receptors coordinating compound uptake with signal transduction. SBPs are a superfamily composed of proteins recognized by 45 Pfam profiles. The definition of SBP profiles for bacteria is hampered by the fact that these Pfam profiles recognize sensor domains for different types of signaling proteins or cytosolic proteins with alternative functions. We report here the retrieval of the SBPs from 49 bacterial model strains with different lifestyles and phylogenetic distributions. Proteins were manually curated, and the ligands recognized were predicted bioinformatically. There were very large differences in the number and type of SBPs between strains, ranging from 7 SBPs in Helicobacter pylori 26695 to 189 SBPs in Sinorhizobium meliloti 1021. SBPs were found to represent 0.22 to 5.13% of the total protein-encoding genes. The abundance of SBPs was largely determined by strain phylogeny, and no obvious link with the bacterial lifestyle was noted. Most abundant (36%) were SBPs predicted to recognize amino acids or peptides, followed by those expected to bind different sugars (18%). To the best of our knowledge, this is the first comparative study of bacterial SBP repertoires. Given the importance of SBPs in nutrient uptake and signaling, this study enhances the knowledge of model bacteria and will permit the definition of SBP profiles of other strains. IMPORTANCE SBPs are essential components for many transporters, but multiple pieces of more recent evidence indicate that the SBP-mediated stimulation of different transmembrane receptors is a general and widespread signal transduction mechanism in bacteria. The double function of SBPs in coordinating transport with signal transduction remains to a large degree unexplored and represents a major research need. The definition of the SBP repertoire of the 49 bacterial model strains examined here, along with information on their cognate ligand profiles forms the basis to close this gap in knowledge. Furthermore, this study provides information on the forces that have driven the evolution of transporters with different ligand specificities in bacteria that differ in phylogenetics and lifestyle. This article is also a first step in setting up automatic algorithms that permit the large-scale identification of the SBP repertoire in proteomes.
Collapse
Affiliation(s)
- Álvaro Ortega
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
6
|
Zhou L, Wang D, Iftikhar M, Lu Y, Zhou M. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B 12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation. Int J Biol Macromol 2021; 187:350-360. [PMID: 34303738 DOI: 10.1016/j.ijbiomac.2021.07.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.
Collapse
Affiliation(s)
- Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Defu Wang
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mehwish Iftikhar
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yinghong Lu
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
7
|
Davies JS, Currie MJ, Wright JD, Newton-Vesty MC, North RA, Mace PD, Allison JR, Dobson RCJ. Selective Nutrient Transport in Bacteria: Multicomponent Transporter Systems Reign Supreme. Front Mol Biosci 2021; 8:699222. [PMID: 34268334 PMCID: PMC8276074 DOI: 10.3389/fmolb.2021.699222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Multicomponent transporters are used by bacteria to transport a wide range of nutrients. These systems use a substrate-binding protein to bind the nutrient with high affinity and then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are linked to the colonisation potential and pathogenicity of bacteria in humans and may be candidates for antimicrobial targeting. Here we review current research into bacterial multicomponent transport systems, with an emphasis on the interaction at the membrane, as well as new perspectives on the role of lipids and higher oligomers in these complex systems.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Joshua D Wright
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
van den Noort M, de Boer M, Poolman B. Stability of Ligand-induced Protein Conformation Influences Affinity in Maltose-binding Protein. J Mol Biol 2021; 433:167036. [PMID: 33957147 DOI: 10.1016/j.jmb.2021.167036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand-protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MBP) from Escherichia coli. We used single-molecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues.
Collapse
Affiliation(s)
- Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Marijn de Boer
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
9
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
10
|
Zemerov SD, Roose BW, Farenhem KL, Zhao Z, Stringer MA, Goldman AR, Speicher DW, Dmochowski IJ. 129Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration. Anal Chem 2020; 92:12817-12824. [PMID: 32897053 PMCID: PMC7649717 DOI: 10.1021/acs.analchem.0c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dysregulation of cellular ribose uptake can be indicative of metabolic abnormalities or tumorigenesis. However, analytical methods are currently limited for quantifying ribose concentration in complex biological samples. Here, we utilize the highly specific recognition of ribose by ribose-binding protein (RBP) to develop a single-protein ribose sensor detectable via a sensitive NMR technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST). We demonstrate that RBP, with a tunable ribose-binding site and further engineered to bind xenon, enables the quantitation of ribose over a wide concentration range (nM to mM). Ribose binding induces the RBP "closed" conformation, which slows Xe exchange to a rate detectable by hyper-CEST. Such detection is remarkably specific for ribose, with the minimal background signal from endogenous sugars of similar size and structure, for example, glucose or ribose-6-phosphate. Ribose concentration was measured for mammalian cell lysate and serum, which led to estimates of low-mM ribose in a HeLa cell line. This highlights the potential for using genetically encoded periplasmic binding proteins such as RBP to measure metabolites in different biological fluids, tissues, and physiologic states.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Kelsey L. Farenhem
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Madison A. Stringer
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Aaron R. Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
- Molecular and Cellular Oncogenesis Program, The Wistar
Institute, Philadelphia, PA 19104, USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:ijms20205156. [PMID: 31627455 PMCID: PMC6829864 DOI: 10.3390/ijms20205156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
- present address: Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Isabel García García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Noel Mesa Torres
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Tajuelo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| |
Collapse
|
12
|
Bafna K, Narayanan C, Chennubhotla SC, Doucet N, Agarwal PK. Nucleotide substrate binding characterization in human pancreatic-type ribonucleases. PLoS One 2019; 14:e0220037. [PMID: 31393891 PMCID: PMC6687278 DOI: 10.1371/journal.pone.0220037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
Human genome contains a group of more than a dozen similar genes with diverse biological functions including antiviral, antibacterial and angiogenesis activities. The characterized gene products of this group show significant sequence similarity and a common structural fold associated with binding and cleavage of ribonucleic acid (RNA) substrates. Therefore, these proteins have been categorized as members of human pancreatic-type ribonucleases (hRNases). hRNases differ in cell/tissue localization and display distinct substrate binding preferences and a wide range of ribonucleolytic catalytic efficiencies. Limited information is available about structural and dynamical properties that influence this diversity among these homologous RNases. Here, we use computer simulations to characterize substrate interactions, electrostatics and dynamical properties of hRNases 1-7 associated with binding to two nucleotide substrates (ACAC and AUAU). Results indicate that even with complete conservation of active-site catalytic triad associated with ribonucleolytic activity, these enzymes show significant differences in substrate interactions. Detailed characterization suggests that in addition to binding site electrostatic and van der Waals interactions, dynamics of distal regions may also play a role in binding. Another key insight is that a small difference in temperature of 300 K (used in experimental studies) and 310 K (physiological temperature) shows significant changes in enzyme-substrate interactions.
Collapse
Affiliation(s)
- Khushboo Bafna
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - S. Chakra Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Québec, Quebec, Canada
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
13
|
Shukla S, Bafna K, Gullett C, Myles DAA, Agarwal PK, Cuneo MJ. Differential Substrate Recognition by Maltose Binding Proteins Influenced by Structure and Dynamics. Biochemistry 2018; 57:5864-5876. [PMID: 30204415 PMCID: PMC6189639 DOI: 10.1021/acs.biochem.8b00783] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.
Collapse
Affiliation(s)
- Shantanu Shukla
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Khushboo Bafna
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
| | - Caeley Gullett
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dean A. A. Myles
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Matthew J. Cuneo
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Deparment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|