1
|
Cronan JE. Biotin protein ligase as you like it: Either extraordinarily specific or promiscuous protein biotinylation. Proteins 2024; 92:435-448. [PMID: 37997490 PMCID: PMC10932917 DOI: 10.1002/prot.26642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Samanta R, Sanghvi N, Beckett D, Matysiak S. Emergence of allostery through reorganization of protein residue network architecture. J Chem Phys 2023; 158:085104. [PMID: 36859102 PMCID: PMC9974213 DOI: 10.1063/5.0136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.
Collapse
Affiliation(s)
- Riya Samanta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Neel Sanghvi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
3
|
Song X, Henke SK, Cronan JE. A division of labor between two biotin protein ligase homologs. Mol Microbiol 2021; 116:648-662. [PMID: 34028100 DOI: 10.1111/mmi.14761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023]
Abstract
Group I biotin protein ligases (BPLs) catalyze the covalent attachment of biotin to its cognate acceptor proteins. In contrast, Group II BPLs have an additional N-terminal DNA-binding domain and function not only in biotinylation but also in transcriptional regulation of genes of biotin biosynthesis and transport. Most bacteria contain only a single biotin protein ligase, whereas Clostridium acetobutylicum contains two biotin protein ligase homologs: BplA and BirA'. Sequence alignments showed that BplA is a typical group I BPL, whereas BirA' lacked the C-terminal domain conserved throughout extant BPL proteins. This raised the questions of why two BPL homologs are needed and why the apparently defective BirA' has been retained. We have used in vivo and in vitro assays to show that BplA is a functional BPL whereas BirA' acts as a biotin sensor involved in transcriptional regulation of biotin transport. We also successfully converted BirA' into a functional biotin protein ligase with regulatory activity by fusing it to the C-terminal domain from BplA. Finally, we provide evidence that BplA and BirA' interact in vivo.
Collapse
Affiliation(s)
- Xuejiao Song
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Sarah K Henke
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, IL, USA.,Department of Microbiology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
4
|
Sirithanakorn C, Cronan JE. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol Rev 2021; 45:6081095. [PMID: 33428728 DOI: 10.1093/femsre/fuab003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a seven carbon α,ω-dicarboxylic acid that contributes seven of the ten biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the E. coli pathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Wang J, Samanta R, Custer G, Look C, Matysiak S, Beckett D. Tuning Allostery through Integration of Disorder to Order with a Residue Network. Biochemistry 2020; 59:790-801. [PMID: 31899864 DOI: 10.1021/acs.biochem.9b01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In allostery, a signal from one site in a protein is transmitted to a second site to alter its function. Due to its ubiquity in biology and the potential for its exploitation in drug and protein design, the molecular basis of allosteric communication continues to be the subject of intense research. Although allosterically coupled sites are frequently characterized by disorder, how communication between disordered segments occurs remains obscure. Allosteric activation of Escherichia coli BirA dimerization occurs via coupled distant disorder-to-order transitions. In this work, combined structural and computational studies reveal an extensive residue network in BirA. Substitution of several network residues yields large perturbations to allostery. Force distribution analysis reveals that disruptions to the disorder-to-order transitions through amino acid substitution are manifested in shifts in the energy experienced by network residues as well as alterations in packing of an α-helix that plays a critical role in allostery. The combined results reveal a highly distributed allosteric mechanism that is robust to sequence change.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemistry & Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Riya Samanta
- Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Gregory Custer
- Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Christopher Look
- Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Dorothy Beckett
- Department of Chemistry & Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
6
|
Satiaputra J, Sternicki LM, Hayes AJ, Pukala TL, Booker GW, Shearwin KE, Polyak SW. Native mass spectrometry identifies an alternative DNA-binding pathway for BirA from Staphylococcus aureus. Sci Rep 2019; 9:2767. [PMID: 30808984 PMCID: PMC6391492 DOI: 10.1038/s41598-019-39398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
An adequate supply of biotin is vital for the survival and pathogenesis of Staphylococcus aureus. The key protein responsible for maintaining biotin homeostasis in bacteria is the biotin retention protein A (BirA, also known as biotin protein ligase). BirA is a bi-functional protein that serves both as a ligase to catalyse the biotinylation of important metabolic enzymes, as well as a transcriptional repressor that regulates biotin biosynthesis, biotin transport and fatty acid elongation. The mechanism of BirA regulated transcription has been extensively characterized in Escherichia coli, but less so in other bacteria. Biotin-induced homodimerization of E. coli BirA (EcBirA) is a necessary prerequisite for stable DNA binding and transcriptional repression. Here, we employ a combination of native mass spectrometry, in vivo gene expression assays, site-directed mutagenesis and electrophoretic mobility shift assays to elucidate the DNA binding pathway for S. aureus BirA (SaBirA). We identify a mechanism that differs from that of EcBirA, wherein SaBirA is competent to bind DNA as a monomer both in the presence and absence of biotin and/or MgATP, allowing homodimerization on the DNA. Bioinformatic analysis demonstrated the SaBirA sequence used here is highly conserved amongst other S. aureus strains, implying this DNA-binding mechanism is widely employed.
Collapse
Affiliation(s)
- Jiulia Satiaputra
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Harry Perkins Institute of Medical Research, Shenton Park, Western Australia, 6008, Australia
| | - Louise M Sternicki
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Andrew J Hayes
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Faculty of Health and Medical Sciences, Adelaide, South Australia, 5005, Australia
| | - Tara L Pukala
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith E Shearwin
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Steven W Polyak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|