1
|
Xiong T, Zhang Z, Fan T, Ye F, Ye Z. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals. BMC Genomics 2024; 25:350. [PMID: 38589807 PMCID: PMC11000326 DOI: 10.1186/s12864-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.
Collapse
Affiliation(s)
- Tao Xiong
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Fan Ye
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ziyi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Son M, Han S, Lee S. Prions in Microbes: The Least in the Most. J Microbiol 2023; 61:881-889. [PMID: 37668956 DOI: 10.1007/s12275-023-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.
Collapse
Affiliation(s)
- Moonil Son
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
- Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sia Han
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Seyeon Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
3
|
Bezsonov E, Khotina V, Glanz V, Sobenin I, Orekhov A. Lipids and Lipoproteins in Atherosclerosis. Biomedicines 2023; 11:biomedicines11051424. [PMID: 37239095 DOI: 10.3390/biomedicines11051424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease [...].
Collapse
Affiliation(s)
- Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University, 8 Izmailovsky Boulevard, 105043 Moscow, Russia
| | - Victoria Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Victor Glanz
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Igor Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15a 3rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
4
|
Ajmal MR. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response. Diseases 2023; 11:30. [PMID: 36810544 PMCID: PMC9944956 DOI: 10.3390/diseases11010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Proteins are central to life functions. Alterations in the structure of proteins are reflected in their function. Misfolded proteins and their aggregates present a significant risk to the cell. Cells have a diverse but integrated network of protection mechanisms. Streams of misfolded proteins that cells are continuously exposed to must be continually monitored by an elaborated network of molecular chaperones and protein degradation factors to control and contain protein misfolding problems. Aggregation inhibition properties of small molecules such as polyphenols are important as they possess other beneficial properties such as antioxidative, anti-inflammatory, and pro-autophagic properties and help neuroprotection. A candidate with such desired features is important for any possible treatment development for protein aggregation diseases. There is a need to study the protein misfolding phenomenon so that we can treat some of the worst kinds of human ailments related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
5
|
Kumar A, Sudevan ST, Nair AS, Singh AK, Kumar S, Jose J, Behl T, Mangalathillam S, Mathew B, Kim H. Current and Future Nano-Carrier-Based Approaches in the Treatment of Alzheimer's Disease. Brain Sci 2023; 13:brainsci13020213. [PMID: 36831756 PMCID: PMC9953820 DOI: 10.3390/brainsci13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
It is a very alarming situation for the globe because 55 million humans are estimated to be affected by Alzheimer's disease (AD) worldwide, and still it is increasing at the rapid speed of 10 million cases per year worldwide. This is an urgent reminder for better research and treatment due to the unavailability of a permanent medication for neurodegenerative disorders like AD. The lack of drugs for neurodegenerative disorder treatment is due to the complexity of the structure of the brain, mainly due to blood-brain barrier, because blood-brain drug molecules must enter the brain compartment. There are several novel and conventional formulation approaches that can be employed for the transportation of drug molecules to the target site in the brain, such as oral, intravenous, gene delivery, surgically implanted intraventricular catheter, nasal and liposomal hydrogels, and repurposing old drugs. A drug's lipophilicity influences metabolic activity in addition to membrane permeability because lipophilic substances have a higher affinity for metabolic enzymes. As a result, the higher a drug's lipophilicity is, the higher its permeability and metabolic clearance. AD is currently incurable, and the medicines available merely cure the symptoms or slow the illness's progression. In the next 20 years, the World Health Organization (WHO) predicts that neurodegenerative illnesses affecting motor function will become the second-leading cause of mortality. The current article provides a brief overview of recent advances in brain drug delivery for AD therapy.
Collapse
Affiliation(s)
- Astik Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore 575018, India
| | - Tapan Behl
- School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Sabitha Mangalathillam
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: (S.M.); or (B.M.); (H.K.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: (S.M.); or (B.M.); (H.K.)
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
- Correspondence: (S.M.); or (B.M.); (H.K.)
| |
Collapse
|
6
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
7
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
8
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
9
|
Wickner RB, Edskes HK, Son M, Wu S. Anti-Prion Systems Block Prion Transmission, Attenuate Prion Generation, Cure Most Prions as They Arise and Limit Prion-Induced Pathology in Saccharomyces cerevisiae. BIOLOGY 2022; 11:biology11091266. [PMID: 36138748 PMCID: PMC9495834 DOI: 10.3390/biology11091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Virus and bacterial infections are opposed by their hosts at many levels. Similarly, we find that infectious proteins (prions) are severely restricted by an array of host systems, acting independently to prevent infection, generation, propagation and the ill effects of yeast prions. These ‘anti-prion systems’ work in normal cells without the overproduction or deficiency of any components. DNA repair systems reverse the effects of DNA damage, with only a rare lesion propagated as a mutation. Similarly, the combined effects of several anti-prion systems cure and block the generation of all but 1 in about 5000 prions arising. We expect that application of our approach to mammalian cells will detect analogous or even homologous systems that will be useful in devising therapy for human amyloidoses, most of which are prions. Abstract All variants of the yeast prions [PSI+] and [URE3] are detrimental to their hosts, as shown by the dramatic slowing of growth (or even lethality) of a majority, by the rare occurrence in wild isolates of even the mildest variants and by the absence of reproducible benefits of these prions. To deal with the prion problem, the host has evolved an array of anti-prion systems, acting in normal cells (without overproduction or deficiency of any component) to block prion transmission from other cells, to lower the rates of spontaneous prion generation, to cure most prions as they arise and to limit the damage caused by those variants that manage to elude these (necessarily) imperfect defenses. Here we review the properties of prion protein sequence polymorphisms Btn2, Cur1, Hsp104, Upf1,2,3, ribosome-associated chaperones, inositol polyphosphates, Sis1 and Lug1, which are responsible for these anti-prion effects. We recently showed that the combined action of ribosome-associated chaperones, nonsense-mediated decay factors and the Hsp104 disaggregase lower the frequency of [PSI+] appearance as much as 5000-fold. Moreover, while Btn2 and Cur1 are anti-prion factors against [URE3] and an unrelated artificial prion, they promote [PSI+] prion generation and propagation.
Collapse
|
10
|
Kushnirov VV, Dergalev AA, Alieva MK, Alexandrov AI. Structural Bases of Prion Variation in Yeast. Int J Mol Sci 2022; 23:ijms23105738. [PMID: 35628548 PMCID: PMC9147965 DOI: 10.3390/ijms23105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Amyloids are protein aggregates with a specific filamentous structure that are related to a number of human diseases, and also to some important physiological processes in animals and other kingdoms of life. Amyloids in yeast can stably propagate as heritable units, prions. Yeast prions are of interest both on their own and as a model for amyloids and prions in general. In this review, we consider the structure of yeast prions and its variation, how such structures determine the balance of aggregated and soluble prion protein through interaction with chaperones and how the aggregated state affects the non-prion functions of these proteins.
Collapse
|
11
|
Bezsonov EE, Edskes HK, Wickner RB. Innate immunity to yeast prions: Btn2p and Cur1p curing of the [URE3] prion is prevented by 60S ribosomal protein deficiency or ubiquitin/proteasome system overactivity. Genetics 2021; 217:6127178. [PMID: 33857305 DOI: 10.1093/genetics/iyab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
[URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ, and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p, or Btn3p are unchanged in rpl4aΔ, rpl21bΔ, or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild-type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ, or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.
Collapse
Affiliation(s)
- Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
12
|
Mutations Outside the Ure2 Amyloid-Forming Region Disrupt [URE3] Prion Propagation and Alter Interactions with Protein Quality Control Factors. Mol Cell Biol 2020; 40:MCB.00294-20. [PMID: 32868289 DOI: 10.1128/mcb.00294-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
The yeast prion [URE3] propagates as a misfolded amyloid form of the Ure2 protein. Propagation of amyloid-based yeast prions requires protein quality control (PQC) factors, and altering PQC abundance or activity can cure cells of prions. Yeast antiprion systems composed of PQC factors act at normal abundance to restrict establishment of the majority of prion variants that arise de novo While these systems are well described, how they or other PQC factors interact with prion proteins remains unclear. To gain insight into such interactions, we identified mutations outside the Ure2 prion-determining region that destabilize [URE3]. Despite residing in the functional domain, 16 of 17 mutants retained Ure2 activity. Four characterized mutations caused rapid loss of [URE3] yet allowed [URE3] to propagate under prion-selecting conditions. Two sensitized [URE3] to Btn2, Cur1, and Hsp42, but in different ways. Two others reduced amyloid formation in vitro Of these, one impaired prion replication and the other apparently impaired transmission. Thus, widely dispersed sites outside a prion's amyloid-forming region can contribute to prion character, and altering such sites can disrupt prion propagation by altering interactions with PQC factors.
Collapse
|
13
|
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants. Proc Natl Acad Sci U S A 2020; 117:26298-26306. [PMID: 33020283 DOI: 10.1073/pnas.2016954117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The yeast prion [PSI+] is a self-propagating amyloid of the translation termination factor, Sup35p. For known pathogenic prions, such as [PSI+], a single protein can form an array of different amyloid structures (prion variants) each stably inherited and with differing biological properties. The ribosome-associated chaperones, Ssb1/2p (Hsp70s), and RAC (Zuo1p (Hsp40) and Ssz1p (Hsp70)), enhance de novo protein folding by protecting nascent polypeptide chains from misfolding and maintain translational fidelity by involvement in translation termination. Ssb1/2p and RAC chaperones were previously found to inhibit [PSI+] prion generation. We find that most [PSI+] variants arising in the absence of each chaperone were cured by restoring normal levels of that protein. [PSI+] variants hypersensitive to Ssb1/2p have distinguishable biological properties from those hypersensitive to Zuo1p or Ssz1p. The elevated [PSI+] generation frequency in each deletion strain is not due to an altered [PIN+], another prion that primes [PSI+] generation. [PSI+] prion generation/propagation may be inhibited by Ssb1/2/RAC chaperones by ensuring proper folding of nascent Sup35p, thus preventing its joining amyloid fibers. Alternatively, the effect of RAC/Ssb mutations on translation termination and the absence of an effect on the [URE3] prion suggest an effect on the mature Sup35p such that it does not readily join amyloid filaments. Ssz1p is degraded in zuo1Δ [psi-] cells, but not if the cells carry any of several [PSI+] variants. Our results imply that prions arise more frequently than had been thought but the cell has evolved exquisite antiprion systems that rapidly eliminate most variants.
Collapse
|
14
|
Three J-proteins impact Hsp104-mediated variant-specific prion elimination: a new critical role for a low-complexity domain. Curr Genet 2019; 66:51-58. [PMID: 31230108 PMCID: PMC6925661 DOI: 10.1007/s00294-019-01006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Prions are self-propagating protein isoforms that are typically amyloid. In Saccharomyces cerevisiae, amyloid prion aggregates are fragmented by a trio involving three classes of chaperone proteins: Hsp40s, also known as J-proteins, Hsp70s, and Hsp104. Hsp104, the sole Hsp100-class disaggregase in yeast, along with the Hsp70 Ssa and the J-protein Sis1, is required for the propagation of all known amyloid yeast prions. However, when Hsp104 is ectopically overexpressed, only the prion [PSI+] is efficiently eliminated from cell populations via a highly debated mechanism that also requires Sis1. Recently, we reported roles for two additional J-proteins, Apj1 and Ydj1, in this process. Deletion of Apj1, a J-protein involved in the degradation of sumoylated proteins, partially blocks Hsp104-mediated [PSI+] elimination. Apj1 and Sis1 were found to have overlapping functions, as overexpression of one compensates for loss of function of the other. In addition, overexpression of Ydj1, the most abundant J-protein in the yeast cytosol, completely blocks Hsp104-mediated curing. Yeast prions exhibit structural polymorphisms known as “variants”; most intriguingly, these J-protein effects were only observed for strong variants, suggesting variant-specific mechanisms. Here, we review these results and present new data resolving the domains of Apj1 responsible, specifically implicating the involvement of Apj1’s Q/S-rich low-complexity domain.
Collapse
|
15
|
Abstract
Yeast prions have become important models for the study of the basic mechanisms underlying human amyloid diseases. Yeast prions are pathogenic (unlike the [Het-s] prion of Podospora anserina), and most are amyloid-based with the same in-register parallel β-sheet architecture as most of the disease-causing human amyloids studied. Normal yeast cells eliminate the large majority of prion variants arising, and several anti-prion/anti-amyloid systems that eliminate them have been identified. It is likely that mammalian cells also have anti-amyloid systems, which may be useful in the same way humoral, cellular, and innate immune systems are used to treat or prevent bacterial and viral infections.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830.
| |
Collapse
|
16
|
Wickner RB, Son M, Edskes HK. Prion Variants of Yeast are Numerous, Mutable, and Segregate on Growth, Affecting Prion Pathogenesis, Transmission Barriers, and Sensitivity to Anti-Prion Systems. Viruses 2019; 11:v11030238. [PMID: 30857327 PMCID: PMC6466074 DOI: 10.3390/v11030238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023] Open
Abstract
The known amyloid-based prions of Saccharomyces cerevisiae each have multiple heritable forms, called "prion variants" or "prion strains". These variants, all based on the same prion protein sequence, differ in their biological properties and their detailed amyloid structures, although each of the few examined to date have an in-register parallel folded β sheet architecture. Here, we review the range of biological properties of yeast prion variants, factors affecting their generation and propagation, the interaction of prion variants with each other, the mutability of prions, and their segregation during mitotic growth. After early differentiation between strong and weak stable and unstable variants, the parameters distinguishing the variants has dramatically increased, only occasionally correlating with the strong/weak paradigm. A sensitivity to inter- and intraspecies barriers, anti-prion systems, and chaperone deficiencies or excesses and other factors all have dramatic selective effects on prion variants. Recent studies of anti-prion systems, which cure prions in wild strains, have revealed an enormous array of new variants, normally eliminated as they arise and so not previously studied. This work suggests that defects in the anti-prion systems, analogous to immune deficiencies, may be at the root of some human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
17
|
Florio TJ, Lokareddy RK, Gillilan RE, Cingolani G. Molecular Architecture of the Inositol Phosphatase Siw14. Biochemistry 2019; 58:534-545. [PMID: 30548067 DOI: 10.1021/acs.biochem.8b01044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Siw14 is a recently discovered inositol phosphatase implicated in suppressing prion propagation in Saccharomyces cerevisiae. In this paper, we used hybrid structural methods to decipher Siw14 molecular architecture. We found the protein exists in solution as an elongated monomer that is ∼140 Å in length, containing an acidic N-terminal domain and a basic C-terminal dual-specificity phosphatase (DSP) domain, structurally similar to the glycogen phosphatase laforin. The two domains are connected by a protease susceptible linker and do not interact in vitro. The crystal structure of Siw14-DSP reveals a highly basic phosphate-binding loop and an ∼10 Å deep substrate-binding crevice that evolved to dephosphorylate pyro-phosphate moieties. A pseudoatomic model of the full-length phosphatase generated from solution, crystallographic, biochemical, and modeling data sheds light on the interesting zwitterionic nature of Siw14, which we hypothesized may play a role in discriminating negatively charged inositol phosphates.
Collapse
Affiliation(s)
- Tyler J Florio
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , 233 South 10th Street , Philadelphia , Pennsylvania 19107 , United States
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , 233 South 10th Street , Philadelphia , Pennsylvania 19107 , United States
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS) , Cornell University , 161 Synchrotron Drive , Ithaca , New York 14853 , United States
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology , Thomas Jefferson University , 233 South 10th Street , Philadelphia , Pennsylvania 19107 , United States.,Institute of Biomembranes and Bioenergetics , National Research Council , Via Amendola 165/A , 70126 Bari , Italy
| |
Collapse
|
18
|
Urakov VN, Mitkevich OV, Dergalev AA, Ter-Avanesyan MD. The Pub1 and Upf1 Proteins Act in Concert to Protect Yeast from Toxicity of the [PSI⁺] Prion. Int J Mol Sci 2018; 19:E3663. [PMID: 30463309 PMCID: PMC6275000 DOI: 10.3390/ijms19113663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
The [PSI⁺] nonsense-suppressor determinant of Saccharomyces cerevisiae is based on the formation of heritable amyloids of the Sup35 (eRF3) translation termination factor. [PSI⁺] amyloids have variants differing in amyloid structure and in the strength of the suppressor phenotype. The appearance of [PSI⁺], its propagation and manifestation depend primarily on chaperones. Besides chaperones, the Upf1/2/3, Siw14 and Arg82 proteins restrict [PSI⁺] formation, while Sla2 can prevent [PSI⁺] toxicity. Here, we identify two more non-chaperone proteins involved in [PSI⁺] detoxification. We show that simultaneous lack of the Pub1 and Upf1 proteins is lethal to cells harboring [PSI⁺] variants with a strong, but not with a weak, suppressor phenotype. This lethality is caused by excessive depletion of the Sup45 (eRF1) termination factor due to its sequestration into Sup35 polymers. We also show that Pub1 acts to restrict excessive Sup35 prion polymerization, while Upf1 interferes with Sup45 binding to Sup35 polymers. These data allow consideration of the Pub1 and Upf1 proteins as a novel [PSI⁺] detoxification system.
Collapse
Affiliation(s)
- Valery N Urakov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Olga V Mitkevich
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Alexander A Dergalev
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Michael D Ter-Avanesyan
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
19
|
Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J, Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. Int J Mol Sci 2018; 19:E1947. [PMID: 29970827 PMCID: PMC6073265 DOI: 10.3390/ijms19071947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
In this review article, yeast model-based research advances regarding the role of Amyloid-β (Aβ), Tau and frameshift Ubiquitin UBB+1 in Alzheimer’s disease (AD) are discussed. Despite having limitations with regard to intercellular and cognitive AD aspects, these models have clearly shown their added value as complementary models for the study of the molecular aspects of these proteins, including their interplay with AD-related cellular processes such as mitochondrial dysfunction and altered proteostasis. Moreover, these yeast models have also shown their importance in translational research, e.g., in compound screenings and for AD diagnostics development. In addition to well-established Saccharomyces cerevisiae models, new upcoming Schizosaccharomyces pombe, Candida glabrata and Kluyveromyces lactis yeast models for Aβ and Tau are briefly described. Finally, traditional and more innovative research methodologies, e.g., for studying protein oligomerization/aggregation, are highlighted.
Collapse
Affiliation(s)
- David Seynnaeve
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Mara Del Vecchio
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Gernot Fruhmann
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Joke Verelst
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Melody Cools
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Jimmy Beckers
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK.
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Vanessa Franssens
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Wickner RB, Edskes HK, Son M, Bezsonov EE, DeWilde M, Ducatez M. Yeast Prions Compared to Functional Prions and Amyloids. J Mol Biol 2018; 430:3707-3719. [PMID: 29698650 DOI: 10.1016/j.jmb.2018.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023]
Abstract
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI+] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Morgan DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Mathieu Ducatez
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| |
Collapse
|