1
|
Kisby G, Raber J. World no-tobacco: effects of second-hand smoke (SHS) and vapors on the developing and adult brain. Front Pharmacol 2025; 16:1466332. [PMID: 40115268 PMCID: PMC11922958 DOI: 10.3389/fphar.2025.1466332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/05/2025] [Indexed: 03/23/2025] Open
Abstract
The goal of this review is to highlight the role of second-hand smoke (SHS) or environmental tobacco smoke (ETS) and e-cigarette (EC) vapors on brain integrity and function during development and adulthood, including how it relates to increasing the risk for age-related neurodegenerative disorders. A systematic review of the literature of the effect of SHS or ETS and e-cigarette vapors on the brain revealed a total of 284 or 372 publications and 312 publications, respectively. After taking into account duplicate publications or publications focused on policy, surveys or other organs than brain, there are limited studies on the effects of SHS, ETS or EC vapors on brain structure and function. In this review, we examine the major constituents in SHS or EC vapors and their effects on brain health, mechanisms by which SHS or vapors alters brain integrity and function, including behavioral and cognitive performance. We hope that this review will encourage investigators to explore further the short-as well long-term effects of SHS or vapor exposure on the developing and adult brain to better understand its role in neurodevelopmental disorders and neurodegenerative diseases and ultimately to develop therapeutic modalities to reduce or even prevent the short- and long-term detrimental effects on brain health.
Collapse
Affiliation(s)
- Glen Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Jacob Raber
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Departments of Behavioral Neuroscience, Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Huang Y, Cai H, Luo F, Chen L, Lin C, Wang J, Guo L, Qiu B, Lin Z. Protein denaturation inspired microchannel-based electrochemiluminescence sensor for formaldehyde detection. Biosens Bioelectron 2025; 267:116778. [PMID: 39270363 DOI: 10.1016/j.bios.2024.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Establishing an effective system to measure formaldehyde (HCHO) content in food is of great significance due to food safety concern. Inspired by the mechanism of HCHO-induced protein denaturation and its effect on ion/molecule transport in nanochannels, a bioinspired microchannel-based electrochemiluminescence (ECL) sensor was constructed for HCHO detection. Benefiting from the water solubility of HCHO, the molecules rapidly spread and enriched at the ethylenediamine (EDA) functionalized microchannel interface. The reaction between EDA and HCHO significantly increased the negative charge density, leading to enhanced electroosmotic flow (EOF). This enhancement resulted in ion concentration depletion at the microchannel tip and a corresponding decrease in ionic current and ECL intensity. The ECL intensity exhibited a linear dependence on the logarithm of HCHO concentration ranging from 1 pg mL-1 to 100 ng mL-1, with a detection limit of 0.26 pg mL-1(S/N = 3). The biosensor demonstrated high selectivity, successfully detecting HCHO in shrimp samples. The performance of the bioinspired sensor was confirmed through comparation with existing methods, showcasing its superior sensitivity and reliability. The bioinspired sensor provides robust technical support for HCHO detection, crucial for food safety monitoring. Additionally, the innovative combination of bionics and microchannel-based ECL technology broadens the application range of ECL sensors, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huabin Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China.
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Xing W, Li Y, Que Y, Xu H, Wang W, Lou K. Fluorescent probes for formaldehyde based on formaldehyde-promoted C-N cleavage of azanyl carbamates. Org Biomol Chem 2024; 22:7349-7353. [PMID: 39189436 DOI: 10.1039/d4ob01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Formaldehyde (FA) is an endogenous one-carbon metabolite and an environmental pollutant and carcinogen. Elevated FA levels are associated with many diseases. Methods for the convenient and in situ detection of FA levels are of great significance for understanding FA's biofunctions and signalling pathways. Herein, the NAP-FAP2 series of fluorescent probes for FA detection were developed based on FA-promoted C-N cleavage of 3-nitrophenylazanyl N-arylcarbamate via FA-induced intramolecularity, where the aryl group is the fluorophore 1,8-naphthalimide-4-yl. The 3-nitrophenylazanyl containing reactive group also functions as a fluorescence quenching group via a photo-induced electron transfer mechanism to generate turn-on fluorescence response upon reaction with FA. The probes were applied to explore FA level changes in erastin-induced ferroptosis, and it was found that the FA level increases intracellularly, but not in the endoplasmic reticulum, suggesting that the FA level increases in ferroptosis are not derived from lipid peroxidation.
Collapse
Affiliation(s)
- Wanjin Xing
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yulin Que
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Huan Xu
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province, 231131, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Kaiyan Lou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
4
|
Ungureanu LB, Ghiciuc CM, Amalinei C, Ungureanu C, Petrovici CG, Stănescu RȘ. Antioxidants as Protection against Reactive Oxygen Stress Induced by Formaldehyde (FA) Exposure: A Systematic Review. Biomedicines 2024; 12:1820. [PMID: 39200284 PMCID: PMC11352058 DOI: 10.3390/biomedicines12081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Formaldehyde induces oxidative stress and is carcinogenic, particularly squamous cell carcinoma of the nasopharyngeal area. Around us, in exhaust gases, cigarette smoke, and various industrial products, FA primarily affects the respiratory tract and other organs like the cornea, liver, kidneys, brain, and cardiovascular system. This study aims to determine if antioxidants can mitigate FA's harmful effects. MATERIALS AND METHODS Several databases, including PubMed, Science Direct, Springer, and Wiley, were systematically searched. Research publications on antioxidants mitigating FA-induced oxidative damage were included, but reviews and articles lacking complete texts were excluded. SYRCLE's risk of bias tool for animal studies has been used. Tables were used for data synthesis. Out of 8790 articles, 35 publications detailing tissue homogenate for biochemical analysis, standard hematoxylin-eosin staining, and immunohistochemistry markers for histopathological and immunohistochemical diagnosis were selected. Most studies were case-control studies, utilizing rat or mouse models. Additionally, one cohort study on industrial workers was analyzed. CONCLUSIONS Antioxidants, including plant extracts, vitamins, and pigments, can prevent or heal FA-induced lesions. However, human studies, particularly biopsies, remain challenging, and animal trials are limited. Further research is needed to confirm FA's long-term effects and optimize antioxidant dosages.
Collapse
Affiliation(s)
- Loredana Beatrice Ungureanu
- Morphopathology, Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (L.B.U.); (C.U.)
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cornelia Amalinei
- Histology, Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Ungureanu
- Morphopathology, Department of Morpho-Functional Sciences I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (L.B.U.); (C.U.)
| | - Cristina Gabriela Petrovici
- Infectious Disease, Department of Medical II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Raluca Ștefania Stănescu
- Biochemistry, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
6
|
Kisby GE, Wilson DM, Spencer PS. Introducing the Role of Genotoxicity in Neurodegenerative Diseases and Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:7221. [PMID: 39000326 PMCID: PMC11241460 DOI: 10.3390/ijms25137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.
Collapse
Affiliation(s)
- Glen E. Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - David M. Wilson
- Biomedical Research Institute, BIOMED, Hasselt University, 3500 Hasselt, Belgium;
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
7
|
Tenney L, Pham VN, Brewer TF, Chang CJ. A mitochondrial-targeted activity-based sensing probe for ratiometric imaging of formaldehyde reveals key regulators of the mitochondrial one-carbon pool. Chem Sci 2024; 15:8080-8088. [PMID: 38817555 PMCID: PMC11134394 DOI: 10.1039/d4sc01183j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Formaldehyde (FA) is both a highly reactive environmental genotoxin and an endogenously produced metabolite that functions as a signaling molecule and one-carbon (1C) store to regulate 1C metabolism and epigenetics in the cell. Owing to its signal-stress duality, cells have evolved multiple clearance mechanisms to maintain FA homeostasis, acting to avoid the established genotoxicity of FA while also redirecting FA-derived carbon units into the biosynthesis of essential nucleobases and amino acids. The highly compartmentalized nature of FA exposure, production, and regulation motivates the development of chemical tools that enable monitoring of transient FA fluxes with subcellular resolution. Here we report a mitochondrial-targeted, activity-based sensing probe for ratiometric FA detection, MitoRFAP-2, and apply this reagent to monitor endogenous mitochondrial sources and sinks of this 1C unit. We establish the utility of subcellular localization by showing that MitoRFAP-2 is sensitive enough to detect changes in mitochondrial FA pools with genetic and pharmacological modulation of enzymes involved in 1C and amino acid metabolism, including the pervasive, less active genetic mutant aldehyde dehydrogenase 2*2 (ALDH2*2), where previous, non-targeted versions of FA sensors are not. Finally, we used MitoRFAP-2 to comparatively profile basal levels of FA across a panel of breast cancer cell lines, finding that FA-dependent fluorescence correlates with expression levels of enzymes involved in 1C metabolism. By showcasing the ability of MitoRFAP-2 to identify new information on mitochondrial FA homeostasis, this work provides a starting point for the design of a broader range of chemical probes for detecting physiologically important aldehydes with subcellular resolution and a useful reagent for further studies of 1C biology.
Collapse
Affiliation(s)
- Logan Tenney
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Vanha N Pham
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Thomas F Brewer
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
8
|
Long MJC, Aye Y. Formaldehyde regulates one-carbon metabolism and epigenetics. Trends Genet 2024; 40:381-382. [PMID: 38503578 DOI: 10.1016/j.tig.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Recently, Pham et al. used an array of model systems to uncover a role for the enzyme methionine adenosyltransferase (MAT)-1A, which is mainly expressed in liver, in both sensing formaldehyde and regulating transcriptional responses that protect against it. This provides a new lens for understanding the effects of formaldehyde on gene regulation.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, 1015, Switzerland.
| |
Collapse
|
9
|
Song W, Ramadan K. Atypical K6-ubiquitin chains mobilize p97/VCP and the proteasome to resolve formaldehyde-induced RNA-protein crosslinks. Mol Cell 2023; 83:4197-4199. [PMID: 38065058 DOI: 10.1016/j.molcel.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
In this issue of Molecular Cell, Rahmanto et al.1 and Zhao et al.2 demonstrate that RNA-protein crosslinks contribute to formaldehyde toxicity by blocking protein synthesis. Furthermore, they identify a ubiquitin-mediated degradation system for RNA-protein crosslink resolution in eukaryotes.
Collapse
Affiliation(s)
- Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
10
|
Pham VN, Bruemmer KJ, Toh JDW, Ge EJ, Tenney L, Ward CC, Dingler FA, Millington CL, Garcia-Prieto CA, Pulos-Holmes MC, Ingolia NT, Pontel LB, Esteller M, Patel KJ, Nomura DK, Chang CJ. Formaldehyde regulates S-adenosylmethionine biosynthesis and one-carbon metabolism. Science 2023; 382:eabp9201. [PMID: 37917677 PMCID: PMC11500418 DOI: 10.1126/science.abp9201] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.
Collapse
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Kevin J. Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Joel D. W. Toh
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Eva J. Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Carl C. Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Felix A. Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher L. Millington
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Carlos A. Garcia-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mia C. Pulos-Holmes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Lucas B. Pontel
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Calle Monforte de Lemos, Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Feixa Llarga, l’Hospitalet de Llobregat, Spain
| | - Ketan J. Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
11
|
Cherkasova MN, Laskavy VN, Borovaya TG, Zhukhovitsky VG, Sednev OM. Revisiting the Problem of Finding Effective Sepsis Treatment Solutions. Bull Exp Biol Med 2023; 174:380-384. [PMID: 36723747 PMCID: PMC9890413 DOI: 10.1007/s10517-023-05712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 02/02/2023]
Abstract
We studied the effect of a preparation containing ultralow doses of formic aldehyde on the course of experimental sepsis caused by intraperitoneal injection of two different strains of Pseudomonas aeruginosa (1623 and 5266) to C57BL/6 male mice. Microscopy and quantitative bacteriological tests in the dynamics of the infectious process demonstrated a positive effect of the drug: 100% survival of animals, preserved histological structure of the studied organs (lungs, liver, kidneys, spleen, and adrenal glands), a sharp decrease in the level of contamination of the blood and organ homogenates during the first hours after infection, and complete absence of bacteria in inoculates on day 7 after infection. These findings suggest the effectiveness of ultralow doses of formic acid aldehyde in the composition of the medicinal product in the treatment of experimental sepsis caused by P. aeruginosa strains 1623 and 5266 in mice.
Collapse
Affiliation(s)
- M. N. Cherkasova
- grid.415738.c0000 0000 9216 2496N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V. N. Laskavy
- LLC “Research Institute of Medical and Veterinary Biotechnologies”, Moscow, Russia
| | - T. G. Borovaya
- grid.415738.c0000 0000 9216 2496N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V. G. Zhukhovitsky
- grid.415738.c0000 0000 9216 2496N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia ,grid.465497.dRussian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O. M. Sednev
- LLC “Research Institute of Medical and Veterinary Biotechnologies”, Moscow, Russia
| |
Collapse
|
12
|
Mehmood S, Khan FU, Shah MN, Ma J, Yang Y, Li G, Xu W, Zhao X, He W, Pan X. A novel room-temperature formaldehyde gas sensor based on walnut-like WO3 modification on Ni–graphene composites. Front Chem 2022; 10:971859. [PMID: 36157033 PMCID: PMC9500379 DOI: 10.3389/fchem.2022.971859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ternary composite with great modulation of electron transfers has attracted a lot of attention from the field of high-performance room-temperature (RT) gas sensing. Herein, walnut-like WO3-Ni–graphene ternary composites were successfully synthesized by the hydrothermal method for formaldehyde (HCHO) sensing at RT. The structural and morphological analyses were carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). SEM and TEM studies confirmed that walnut-like WO3 nanostructures with an average size of 53 ± 23 nm were functionalized. The Raman and XPS results revealed that, due to the deformation of the O-W-O lattice, surface oxygen vacancies Ov and surface-adsorbed oxygen species Oc were present. The gas-sensing measurement shows that the response of the WO3-Ni-Gr composite (86.8%) was higher than that of the Ni-Gr composite (22.7%) for 500 ppm HCHO at RT. Gas-sensing enhancement can be attributed to a p-n heterojunction formation between WO3 and Ni-Gr, Oc, spill-over effect of Ni decoration, and a special walnut-like structure. Moreover, long term stability (%R = 61.41 ± 1.66) for 30 days and high selectivity in the presence of other gases against HCHO suggested that the proposed sensor could be an ideal candidate for future commercial HCHO-sensing in a real environment.
Collapse
Affiliation(s)
- Shahid Mehmood
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Faheem Ullah Khan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Muhmmad Naeem Shah
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Guijun Li
- Key Labortary of Optoelectronics Devices and System of Ministry of Education and Guangdong Province, College of Physics and Optoelctronics Engineering, Shenzhen University, Shenzhen, China
| | - Wei Xu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
- Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojin Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Wei He
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiaofang Pan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Xiaofang Pan,
| |
Collapse
|
13
|
Li B, Wan Z, Zheng H, Cai S, Tian HW, Tang H, Chu X, He G, Guo DS, Xue XS, Chen G. Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine. J Am Chem Soc 2022; 144:10080-10090. [PMID: 35639413 DOI: 10.1021/jacs.2c04620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a growing interest in constructing multicyclic peptide structures to expand the chemical space of peptides. Conventional strategies for constructing large peptide structures are limited by the typical reliance on the inflexible coupling between premade templates equipped with fixed reactive handles and peptide substrates via cysteine anchors. Herein, we report the development of a facile three-component condensation reaction of primary alkyl amine, formaldehyde, and guanidine for construction of complex macromulticyclic peptides with novel topologies via lysine anchors. Moreover, the reaction sequences can be orchestrated in different anchor combinations and spatial arrangements to generate various macrocyclic structures crosslinked by distinct fused tetrahydrotriazine linkages. The macrocyclization reactions are selective, efficient, versatile, and workable in both organic and aqueous media. Thus, the condensation reaction provides a smart tool for stitching native peptides in situ using simple methylene threads and guanidine joints in a flexible and programmable manner.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanliang Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shaokun Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Wen Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Khan FU, Mehmood S, Liu S, Xu W, Shah MN, Zhao X, Ma J, Yang Y, Pan X. A p-n Heterojunction Based Pd/PdO@ZnO Organic Frameworks for High-Sensitivity Room-Temperature Formaldehyde Gas Sensor. Front Chem 2021; 9:742488. [PMID: 34616714 PMCID: PMC8489732 DOI: 10.3389/fchem.2021.742488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
As formaldehyde is an extremely toxic volatile organic pollutant, a highly sensitive and selective gas sensor for low-concentration formaldehyde monitoring is of great importance. Herein, metal-organic framework (MOF) derived Pd/PdO@ZnO porous nanostructures were synthesized through hydrothermal method followed by calcination processes. Specifically, porous Pd/PdO@ZnO nanomaterials with large surfaces were synthesized using MOFs as sacrificial templates. During the calcination procedure, an optimized temperature of 500°C was used to form a stable structure. More importantly, intensive PdO@ZnO inside the material and composite interface provides lots of p-n heterojunction to efficiently manipulate room temperature sensing performance. As the height of the energy barrier at the junction of PdO@ZnO exponentially influences the sensor resistance, the Pd/PdO@ZnO nanomaterials exhibit high sensitivity (38.57% for 100 ppm) at room temperature for 1-ppm formaldehyde with satisfactory selectivity towards (ammonia, acetone, methanol, and IPA). Besides, due to the catalytic effect of Pd and PdO, the adsorption and desorption of the gas molecules are accelerated, and the response and recovery time is as small as 256 and 264 s, respectively. Therefore, this MOF-driven strategy can prepare metal oxide composites with high surface area, well-defined morphology, and satisfactory room-temperature formaldehyde gas sensing performance for indoor air quality control.
Collapse
Affiliation(s)
- Faheem Ullah Khan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Shahid Mehmood
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Shiliang Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Wei Xu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Muhammad Naeem Shah
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiaojin Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiaofang Pan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
16
|
Chen MY, Chen JW, Wu LW, Huang KC, Chen JY, Wu WS, Chiang WF, Shih CJ, Tsai KN, Hsieh WT, Ho YH, Wong TY, Wu JH, Chen YL. Carcinogenesis of Male Oral Submucous Fibrosis Alters Salivary Microbiomes. J Dent Res 2020; 100:397-405. [PMID: 33089709 DOI: 10.1177/0022034520968750] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most oral squamous cell carcinoma (OSCC) tumors arise from oral premalignant lesions. Oral submucous fibrosis (OSF), usually occurring in male chewers of betel quid, is a premalignant stromal disease characterized by a high malignant transformation rate and high prevalence. Although a relationship between the inhabited microbiome and carcinogenesis has been proposed, no detailed information regarding the oral microbiome of patients with OSF exists; the changes of the salivary microbiome during cancer formation remain unclear. This study compared the salivary microbiomes of male patients with OSCC and a predisposing OSF background (OSCC-OSF group) and those with OSF only (OSF group). The results of high-throughput sequencing of the bacterial 16S rRNA gene indicated that OSF-related carcinogenesis and smoking status significantly contributed to phylogenetic composition variations in the salivary microbiome, leading to considerable reductions in species richness and phylogenetic diversity. The microbiome profile of OSF-related malignancy was associated with increased microbial stochastic fluctuation, which dominated the salivary microbiome assembly and caused species co-occurrence network collapse. Artificial intelligence selection algorithms consistently identified 5 key species in the OSCC-OSF group: Porphyromonas catoniae, Prevotella multisaccharivorax, Prevotella sp. HMT-300, Mitsuokella sp. HMT-131, and Treponema sp. HMT-927. Robust accuracy in predicting oral carcinogenesis was obtained with our exploratory and validation data sets. In functional analysis, the microbiome of the OSCC-OSF group had greater potential for S-adenosyl-l-methionine and norspermidine synthesis but lower potential for l-ornithine and pyrimidine deoxyribonucleotide synthesis and formaldehyde metabolism. These findings indicated that the salivary microbiome plays important roles in modulating microbial metabolites during oral carcinogenesis. In conclusion, our results provided new insights into salivary microbiome alterations during the malignant transformation of OSF.
Collapse
Affiliation(s)
- M Y Chen
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Institute of Oral Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - J W Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - L W Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - K C Huang
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J Y Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - W S Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - W F Chiang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Taiwan
| | - C J Shih
- Bioresource Collection and Research Center, Hsinchu, Taiwan
| | - K N Tsai
- Delta Research Center, Delta Electronics, Inc., Taipei, Taiwan
| | - W T Hsieh
- Delta Research Center, Delta Electronics, Inc., Taipei, Taiwan
| | - Y H Ho
- Delta Research Center, Delta Electronics, Inc., Taipei, Taiwan
| | - T Y Wong
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Institute of Oral Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan.,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J H Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Y L Chen
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Yi J, Zhu M, Qiu F, Zhou Y, Shu P, Liu N, Wei C, Xiang S. TNFAIP1 Mediates Formaldehyde-Induced Neurotoxicity by Inhibiting the Akt/CREB Pathway in N2a Cells. Neurotox Res 2020; 38:184-198. [PMID: 32335808 DOI: 10.1007/s12640-020-00199-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Formaldehyde (FA) is a common air pollutant. Exposure to exogenous FA can cause damage to the nervous system, such as learning and memory impairment, balance dysfunction, and sleep disorders. Excessive production of endogenous FA also causes memory impairment and is thought to be associated with Alzheimer's disease (AD). Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) plays a crucial role in neurodevelopment and neurological diseases. However, the role of TNFAIP1 in FA-induced neurotoxicity is unclear. Herein, using a mouse neuroblastoma cell line (N2a cells), we explored the mechanism of TNFAIP1 in FA-induced neurotoxicity, the involvement of the Akt/CREB signaling pathway, and how the expression of TNFAIP1 is regulated by FA. We found that exposure to 100 μM or 200 μM FA for 24 h led to decreased cell viability, increased cell apoptosis and neurite retraction, increased reactive oxygen species (ROS) levels, upregulated protein expression of TNFAIP1 and decreased the levels of phosphorylated Akt and CREB in the Akt/CREB pathway. Knockdown of TNFAIP1 using a TNFAIP1 small interfering RNA (siRNA) expression vector prevented FA from inhibiting the Akt/CREB pathway, thus reducing cell apoptosis and restoring cell viability and neurite outgrowth. Clearance of ROS by vitamin E (Vit E) repressed the FA-mediated upregulation of TNFAIP1 expression. These results suggest that FA increases the expression of TNFAIP1 by inducing oxidative stress and that upregulated TNFAIP1 then inhibits the Akt/CREB pathway, consequently leading to cell apoptosis and neurite retraction. Therefore, TNFAIP1 is a potential target for alleviating FA-induced neurotoxicity and related neurological disorders.
Collapse
Affiliation(s)
- Junzhi Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yubo Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pan Shu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
18
|
Nadalutti CA, Stefanick DF, Zhao ML, Horton JK, Prasad R, Brooks AM, Griffith JD, Wilson SH. Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Sci Rep 2020; 10:5575. [PMID: 32221313 PMCID: PMC7101401 DOI: 10.1038/s41598-020-61477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Formaldehyde (FA) is a simple biological aldehyde that is produced inside cells by several processes such as demethylation of DNA and proteins, amino acid metabolism, lipid peroxidation and one carbon metabolism (1-C). Although accumulation of excess FA in cells is known to be cytotoxic, it is unknown if an increase in FA level might be associated with mitochondrial dysfunction. We choose to use primary human fibroblasts cells in culture (foreskin, FSK) as a physiological model to gain insight into whether an increase in the level of FA might affect cellular physiology, especially with regard to the mitochondrial compartment. FSK cells were exposed to increasing concentrations of FA, and different cellular parameters were studied. Elevation in intracellular FA level was achieved and was found to be cytotoxic by virtue of both apoptosis and necrosis and was accompanied by both G2/M arrest and reduction in the time spent in S phase. A gene expression assessment by microarray analysis revealed FA affected FSK cells by altering expression of many genes including genes involved in mitochondrial function and electron transport. We were surprised to observe increased DNA double-strand breaks (DSBs) in mitochondria after exposure to FA, as revealed by accumulation of γH2A.X and 53BP1 at mitochondrial DNA foci. This was associated with mitochondrial structural rearrangements, loss of mitochondrial membrane potential and activation of mitophagy. Collectively, these results indicate that an increase in the cellular level of FA can trigger mitochondrial DNA double-strand breaks and dysfunction.
Collapse
Affiliation(s)
- Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Ashley M Brooks
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
19
|
Tian Z, Bai H, Li Y, Liu W, Li J, Kong Q, Xi G. Gas-Sensing Activity of Amorphous Copper Oxide Porous Nanosheets. ChemistryOpen 2020; 9:80-86. [PMID: 31988843 PMCID: PMC6966994 DOI: 10.1002/open.201900327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
In this paper, the gas-sensing properties of copper oxide porous nanosheets in amorphous and highly crystalline states were comparatively investigated on the premise of almost the same specific surface area, morphology and size. Unexpectedly, the results show that amorphous copper oxide porous nanosheets have much better gas sensing properties than highly crystalline copper oxide to a serious of volatile organic compounds, and the lowest detection limit (LOD) of the amorphous copper oxide porous nanosheets to methanal is even up to 10 ppb. By contrast, the LOD of the highly crystalline copper oxide porous nanosheets to methanal is 95 ppb. Experiments prove that the oxygen vacancies contained in the amorphous copper oxide porous nanosheets play a key role in improving gas sensitivity, which greatly improve the chemical activity of the materials, especially for the adsorption of molecules containing oxygen-groups such as methanal and oxygen.
Collapse
Affiliation(s)
- Zheng Tian
- School of the Environment and Safety engineeringJiangsu UniversityZhenjiang212013P. R. China
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineNo. 11, Ronghua South RoadBeijing
| | - Hua Bai
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineNo. 11, Ronghua South RoadBeijing
| | - Yahui Li
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineNo. 11, Ronghua South RoadBeijing
| | - Wei Liu
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineNo. 11, Ronghua South RoadBeijing
| | - Junfang Li
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineNo. 11, Ronghua South RoadBeijing
| | - Qinghong Kong
- School of the Environment and Safety engineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Guangcheng Xi
- Institute of Industrial and Consumer Product SafetyChinese Academy of Inspection and QuarantineNo. 11, Ronghua South RoadBeijing
| |
Collapse
|
20
|
Kumar V, Vikrant K, Kim KH. Use of graphene-based structures as platforms for the trace-level detection of gaseous formaldehyde and insights into their superior sensing potentials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Vikrant K, Deng YX, Kim KH, Younis SA, Boukhvalov DW, Ahn WS, Deep A. Application of Zr-Cluster-Based MOFs for the Adsorptive Removal of Aliphatic Aldehydes (C 1 to C 5) from an Industrial Solvent. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44270-44281. [PMID: 31690072 DOI: 10.1021/acsami.9b15220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are recognized as advanced sorbents for the effective removal and recovery of various hazardous pollutants in liquid and gaseous environments. In this research, the potential applicability of two Zr-based MOFs (UiO-66 (U6) and its amine counterpart UiO-66-NH2 (U6N)) was investigated relative to activated carbon (AC, tested as a reference adsorbent) for the purification of industrial organic solvents (e.g., methanol) from six different carbonyl impurities (CCs (C1 to C5): formaldehyde (FA, CH2O), acetaldehyde (AA, CH3CHO), propionaldehyde (PA, C3H6O), butyraldehyde (BA, C4H8O), isovaleraldehyde (IA, C5H10O), and valeraldehyde (VA, C5H10O)). In the sorptive removal of these CCs (both individually and in binary mixtures with FA), U6N showed higher efficacy in capturing all of the target CCs than U6 and AC. The adsorption selectivity of U6N toward single CC compounds was in the order of PA (165.1 mg g-1) > BA (158.9 mg g-1) > IA (154 mg g-1) > AA (136 mg g-1) > VA (131.5 mg g-1) > FA (120 mg g-1). In all binary mixtures, U6N selectively captured FA over the heavier CCs (C2-C5) by 1.5-3.3 times due to the steric hindrance of the C2-C5 aliphatic tails in the pore diffusion mechanism. The preferential adsorption of FA onto U6N can also be accounted for by the contribution of chemical bonding (Schiff base interaction) between the -NH2 groups in U6N and the C═O functionalities (aldehyde molecules) and physisorption, as confirmed by density functional theory (DFT) calculations. Theoretical DFT simulations also revealed that the competition between aldehyde molecules for Brønsted acidic sites (μ3-OH of Zr-clusters) created minor distortions in the U6/U6N frameworks.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering , Hanyang University , 222 Wangsimni-Ro , Seoul 04763 , Republic of Korea
| | - Ya-Xin Deng
- Science and Technology on Reactor System Design Technology Laboratory , Nuclear Power Institution of China , Chengdu 610213 , China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering , Hanyang University , 222 Wangsimni-Ro , Seoul 04763 , Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering , Hanyang University , 222 Wangsimni-Ro , Seoul 04763 , Republic of Korea
- Analysis and Evaluation Department , Egyptian Petroleum Research Institute (EPRI) , Nasr City, Cairo 11727 , Egypt
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry , Nanjing Forestry University , Nanjing 210037 , China
- Theoretical Physics and Applied Mathematics Department , Ural Federal University , Mira Street 19 , Yekaterinburg 620002 , Russia
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering , Inha University , Incheon 402-751 , Republic of Korea
| | - Akash Deep
- Nanoscience and Nanotechnology Lab , Central Scientific Instruments Organization (CSIR-CSIO) , Sector 30 C , Chandigarh 160030 , India
| |
Collapse
|
22
|
Janfaza S, Khorsand B, Nikkhah M, Zahiri J. Digging deeper into volatile organic compounds associated with cancer. Biol Methods Protoc 2019; 4:bpz014. [PMID: 32161807 PMCID: PMC6994028 DOI: 10.1093/biomethods/bpz014] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs), produced and emitted through the metabolism of cancer cells or the body's immune system, are considered novel cancer biomarkers for diagnostic purposes. Of late, a large number of work has been done to find a relationship between VOCs' signature of body and cancer. Cancer-related VOCs can be used to detect several types of cancers at the earlier stages which in turn provide a significantly higher chance of survival. Here we aim to provide an updated picture of cancer-related VOCs based on recent findings in this field focusing on cancer odor database.
Collapse
Affiliation(s)
- Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
23
|
Abstract
AbstractFormaldehyde is a biological electrophile produced via processes including enzymatic demethylation. Despite its apparent simplicity, the reactions of formaldehyde with even basic biological components are incompletely defined. Here we report NMR-based studies on the reactions of formaldehyde with common proteinogenic and other nucleophilic amino acids. The results reveal formaldehyde reacts at different rates, forming hydroxymethylated, cyclised, cross-linked, or disproportionated products of varying stabilities. Of the tested common amino acids, cysteine reacts most efficiently, forming a stable thiazolidine. The reaction with lysine is less efficient; low levels of an Nε-methylated product are observed, raising the possibility of non-enzymatic lysine methylation by formaldehyde. Reactions with formaldehyde are faster than reactions with other tested biological carbonyl compounds, and the adducts are also more stable. The results reveal reactions of formaldehyde with amino acids, and by extension peptides and proteins, have potential roles in healthy and diseased biology, as well as in evolution.
Collapse
|
24
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
25
|
Dorokhov YL, Sheshukova EV, Bialik TE, Komarova TV. Human Endogenous Formaldehyde as an Anticancer Metabolite: Its Oxidation Downregulation May Be a Means of Improving Therapy. Bioessays 2018; 40:e1800136. [PMID: 30370669 DOI: 10.1002/bies.201800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Malignant cells are characterized by an increased content of endogenous formaldehyde formed as a by-product of biosynthetic processes. Accumulation of formaldehyde in cancer cells is combined with activation of the processes of cellular formaldehyde clearance. These mechanisms include increased ALDH and suppressed ADH5/FDH activity, which oncologists consider poor and favorable prognostic markers, respectively. Here, the sources and regulation of formaldehyde metabolism in cancer cells are reviewed. The authors also analyze the participation of oncoproteins such as fibulins, FGFR1, HER2/neu, FBI-1, and MUC1-C in the control of genes related to formaldehyde metabolism, suggesting the existence of two mutually exclusive processes in cancer cells: 1) production and 2) oxidation and elimination of formaldehyde from the cell. The authors hypothesize that the study of the anticancer properties of disulfiram and alpha lipoic acid - which affect the balance of formaldehyde in the body - may serve as the basis of future anticancer therapy.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - Tatiana E Bialik
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Moscow, Russia
| | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|