1
|
Tjo H, Jiang V, Joseph JA, Conway JM. Maltodextrin transport in the extremely thermophilic, lignocellulose degrading bacterium Anaerocellum bescii (f. Caldicellulosiruptor bescii). J Bacteriol 2025; 207:e0040124. [PMID: 40304524 PMCID: PMC12096829 DOI: 10.1128/jb.00401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. Anaerocellum bescii (formerly Caldicellulosiruptor bescii) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the released oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-binding cassette (ABC) transporters in A. bescii governing maltodextrin transport. Utilizing past transcriptomic studies on Anaerocellum and Caldicellulosiruptor species, we identify two maltodextrin transporters in A. bescii and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins, such as maltose and trehalose, with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micromolar range. Using a sequence-structure-function comparison approach combined with molecular modeling, we provide context for the specificity of each of these substrate-binding proteins. We propose that A. bescii utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency. IMPORTANCE Here, we reveal the biophysical and structural basis for oligosaccharide transport by two maltodextrin ATP-binding cassette (ABC) transporters in Anaerocellum bescii. This is the first biophysical characterization of carbohydrate uptake in this organism and establishes a workflow for characterizing other oligosaccharide transporters in A. bescii and similar biomass-degrading thermophiles of interest for lignocellulosic bioprocessing. By deciphering the mechanisms underlying high-affinity sugar uptake in A. bescii, we shed light on an underexplored step between extracellular lignocellulose degradation and intracellular conversion of sugars to metabolic products. This understanding will expand opportunities for harnessing sugar transport in thermophiles to reshape lignocellulose bioprocessing as part of a renewable bioeconomy.
Collapse
Affiliation(s)
- Hansen Tjo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Virginia Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Jerelle A. Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M. Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
van den Noort M, de Boer M, Poolman B. Stability of Ligand-induced Protein Conformation Influences Affinity in Maltose-binding Protein. J Mol Biol 2021; 433:167036. [PMID: 33957147 DOI: 10.1016/j.jmb.2021.167036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022]
Abstract
Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand-protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MBP) from Escherichia coli. We used single-molecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues.
Collapse
Affiliation(s)
- Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Marijn de Boer
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
3
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
4
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Bustos-Jaimes I, Marcos-Víquez JÁ, González-Segura L, Díaz-Sánchez ÁG. Interaction of N-succinyl diaminopimelate desuccinylase with orphenadrine and disulfiram. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C. An integrated transport mechanism of the maltose ABC importer. Res Microbiol 2019; 170:321-337. [PMID: 31560984 PMCID: PMC6906923 DOI: 10.1016/j.resmic.2019.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to transport a large diversity of molecules actively across biological membranes. A combination of biochemical, biophysical, and structural studies has established the maltose transporter MalFGK2 as one of the best characterized proteins of the ABC family. MalF and MalG are the transmembrane domains, and two MalKs form a homodimer of nucleotide-binding domains. A periplasmic maltose-binding protein (MalE) delivers maltose and other maltodextrins to the transporter, and triggers its ATPase activity. Substrate import occurs in a unidirectional manner by ATP-driven conformational changes in MalK2 that allow alternating access of the substrate-binding site in MalF to each side of the membrane. In this review, we present an integrated molecular mechanism of the transport process considering all currently available information. Furthermore, we summarize remaining inconsistencies and outline possible future routes to decipher the full mechanistic details of transport by MalEFGK2 complex and that of related importer systems.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Douglas A Griffith
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Cédric Orelle
- Université de Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|