1
|
Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: Advances and challenges. J Biol Chem 2025; 301:108015. [PMID: 39608721 PMCID: PMC11728972 DOI: 10.1016/j.jbc.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a powerful tool against communicable diseases and cancers, as demonstrated by their huge success during the coronavirus disease 2019 (COVID-19) pandemic. Despite the outstanding achievements, mRNA vaccines still face challenges such as stringent storage requirements, insufficient antigen expression, and unexpected immune responses. Since the intrinsic properties of mRNA molecules significantly impact vaccine performance, optimizing mRNA design is crucial in preclinical development. In this review, we outline four key principles for optimal mRNA sequence design: enhancing ribosome loading and translation efficiency through untranslated region (UTR) optimization, improving translation efficiency via codon optimization, increasing structural stability by refining global RNA sequence and extending in-cell lifetime and expression fidelity by adjusting local RNA structures. We also explore recent advancements in computational models for designing and optimizing mRNA vaccine sequences following these principles. By integrating current mRNA knowledge, addressing challenges, and examining advanced computational methods, this review aims to promote the application of computational approaches in mRNA vaccine development and inspire novel solutions to existing obstacles.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Sicheng Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA; Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
2
|
Li CY, Sandhu S, Ken ML. RNA ensembles from in vitro to in vivo: Toward predictive models of RNA cellular function. Curr Opin Struct Biol 2024; 89:102915. [PMID: 39401473 DOI: 10.1016/j.sbi.2024.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 11/29/2024]
Abstract
Deepening our understanding of RNA biology and accelerating development of RNA-based therapeutics go hand-in-hand-both requiring a transition from qualitative descriptions of RNA structure to quantitative models capable of predicting RNA behaviors, and from a static to an ensemble view. Ensembles are determined from their free energy landscapes, which define the relative populations of conformational states and the energetic barriers separating them. Experimental determination of RNA ensembles over the past decade has led to powerful predictive models of RNA behavior in vitro. It has also been shown during this time that the cellular environment redistributes RNA ensembles, changing the abundances of functionally relevant conformers relative to in vitro contexts with subsequent functional RNA consequences. However, recent studies have demonstrated that testing models built from in vitro ensembles with highly quantitative measurements of RNA cellular function, aided by emerging computational methodologies, enables predictive modelling of cellular activity and biological discovery.
Collapse
Affiliation(s)
- Catherine Y Li
- The Scripps Research Institute, Graduate Program, La Jolla, CA, USA
| | - Shawn Sandhu
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Megan L Ken
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA.
| |
Collapse
|
3
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Boerneke MA, Gokhale NS, Horner SM, Weeks KM. Structure-first identification of RNA elements that regulate dengue virus genome architecture and replication. Proc Natl Acad Sci U S A 2023; 120:e2217053120. [PMID: 37011200 PMCID: PMC10104495 DOI: 10.1073/pnas.2217053120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
The genomes of RNA viruses encode the information required for replication in host cells both in their linear sequence and in complex higher-order structures. A subset of these RNA genome structures show clear sequence conservation, and have been extensively described for well-characterized viruses. However, the extent to which viral RNA genomes contain functional structural elements-unable to be detected by sequence alone-that nonetheless are critical to viral fitness is largely unknown. Here, we devise a structure-first experimental strategy and use it to identify 22 structure-similar motifs across the coding sequences of the RNA genomes for the four dengue virus serotypes. At least 10 of these motifs modulate viral fitness, revealing a significant unnoticed extent of RNA structure-mediated regulation within viral coding sequences. These viral RNA structures promote a compact global genome architecture, interact with proteins, and regulate the viral replication cycle. These motifs are also thus constrained at the levels of both RNA structure and protein sequence and are potential resistance-refractory targets for antivirals and live-attenuated vaccines. Structure-first identification of conserved RNA structure enables efficient discovery of pervasive RNA-mediated regulation in viral genomes and, likely, other cellular RNAs.
Collapse
Affiliation(s)
- Mark A. Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Nandan S. Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| |
Collapse
|
5
|
Lennon SR, Batey RT. Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches. J Mol Biol 2022; 434:167585. [PMID: 35427633 PMCID: PMC9474592 DOI: 10.1016/j.jmb.2022.167585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Riboswitches are an outstanding example of genetic regulation mediated by RNA conformational switching. In these non-coding RNA elements, the occupancy status of a ligand-binding domain governs the mRNA's decision to form one of two mutually exclusive structures in the downstream expression platform. Temporal constraints upon the function of many riboswitches, requiring folding of complex architectures and conformational switching in a limited co-transcriptional timeframe, make them ideal model systems for studying these processes. In this review, we focus on the mechanism of ligand-directed conformational changes in one of the most widely distributed riboswitches in bacteria: the cobalamin family. We describe the architectural features of cobalamin riboswitches whose structures have been determined by x-ray crystallography, which suggest a direct physical role of cobalamin in effecting the regulatory switch. Next, we discuss a series of experimental approaches applied to several model cobalamin riboswitches that interrogate these structural models. As folding is central to riboswitch function, we consider the differences in folding landscapes experienced by RNAs that are produced in vitro and those that are allowed to fold co-transcriptionally. Finally, we highlight a set of studies that reveal the difficulties of studying cobalamin riboswitches outside the context of transcription and that co-transcriptional approaches are essential for developing a more accurate picture of their structure-function relationships in these switches. This understanding will be essential for future advancements in the use of small-molecule guided RNA switches in a range of applications such as biosensors, RNA imaging tools, and nucleic acid-based therapies.
Collapse
Affiliation(s)
- Shelby R Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
6
|
Abstract
RNA lies upstream of nearly all biology and functions as the central conduit of information exchange in all cells. RNA molecules encode information both in their primary sequences and in complex structures that form when an RNA folds back on itself. From the time of discovery of mRNA in the late 1950s until quite recently, we had only a rudimentary understanding of RNA structure across vast regions of most messenger and noncoding RNAs. This deficit is now rapidly being addressed, especially by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry, mutational profiling (MaP), and closely related platform technologies that, collectively, create chemical microscopes for RNA. These technologies make it possible to interrogate RNA structure, quantitatively, at nucleotide resolution, and at large scales, for entire mRNAs, noncoding RNAs, and viral RNA genomes. By applying comprehensive structure probing to diverse problems, we and others are showing that control of biological function mediated by RNA structure is ubiquitous across prokaryotic and eukaryotic organisms.Work over the past decade using SHAPE-based analyses has clarified key principles. First, the method of RNA structure probing matters. SHAPE-MaP, with its direct and one-step readout that probes nearly every nucleotide by reaction at the 2'-hydroxyl, gives a more detailed and accurate readout than alternatives. Second, comprehensive chemical probing is essential. Focusing on fragments of large RNAs or using meta-gene or statistical analyses to compensate for sparse data sets misses critical features and often yields structure models with poor predictive power. Finally, every RNA has its own internal structural personality. There are myriad ways in which RNA structure modulates sequence accessibility, protein binding, translation, splice-site choice, phase separation, and other fundamental biological processes. In essentially every instance where we have applied rigorous and quantitative SHAPE technologies to study RNA structure-function interrelationships, new insights regarding biological regulatory mechanisms have emerged. RNA elements with more complex higher-order structures appear more likely to contain high-information-content clefts and pockets that bind small molecules, broadly informing a vigorous field of RNA-targeted drug discovery.The broad implications of this collective work are twofold. First, it is long past time to abandon depiction of large RNAs as simple noodle-like or gently flowing molecules. Instead, we need to emphasize that nearly all RNAs are punctuated with distinctive internal structures, a subset of which modulate function in profound ways. Second, structure probing should be an integral component of any effort that seeks to understand the functional nexuses and biological roles of large RNAs.
Collapse
Affiliation(s)
- Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
7
|
The lncRNA Growth Arrest Specific 5 Regulates Cell Survival via Distinct Structural Modules with Independent Functions. Cell Rep 2021; 32:107933. [PMID: 32697996 DOI: 10.1016/j.celrep.2020.107933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that the architecture of long non-coding RNAs (lncRNAs)-just like that of proteins-is hierarchically organized into independently folding sub-modules with distinct functions. Studies characterizing the cellular activities of such modules, however, are rare. The lncRNA growth arrest specific 5 (GAS5) is a key regulator of cell survival in response to stress and nutrient availability. We use SHAPE-MaP to probe the structure of GAS5 and identify three separate structural modules that act independently in leukemic T cells. The 5' terminal module with low secondary structure content affects basal survival and slows the cell cycle, whereas the highly structured core module mediates the effects of mammalian target of rapamycin (mTOR) inhibition on cell growth. These results highlight the central role of GAS5 in regulating cell survival and reveal how a single lncRNA transcript utilizes a modular structure-function relationship to respond to a variety of cellular stresses under various cellular conditions.
Collapse
|
8
|
Andrzejewska A, Zawadzka M, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. In vivo structure of the Ty1 retrotransposon RNA genome. Nucleic Acids Res 2021; 49:2878-2893. [PMID: 33621339 PMCID: PMC7969010 DOI: 10.1093/nar/gkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
Collapse
Affiliation(s)
- Angelika Andrzejewska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
9
|
Owens MC, Clark SC, Yankey A, Somarowthu S. Identifying Structural Domains and Conserved Regions in the Long Non-Coding RNA lncTCF7. Int J Mol Sci 2019; 20:ijms20194770. [PMID: 31561429 PMCID: PMC6801803 DOI: 10.3390/ijms20194770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) biology is a rapidly growing area of study. Thousands of lncRNAs are implicated as key players in cellular pathways and cancer biology. However, the structure–function relationships of these novel biomolecules are not well understood. Recent structural studies suggest that lncRNAs contain modular structural domains, which play a crucial role in their function. Here, we hypothesized that such structural domains exist in lncTCF7, a conserved lncRNA implicated in the development and progression of several cancers. To understand the structure–function relationship of lncTCF7, we characterized its secondary structure using chemical probing methods. Our model revealed structural domains and conserved regions in lncTCF7. One of the modular domains identified here coincides with a known protein-interacting domain. The model reported herein is, to our knowledge, the first structural model of lncTCF7 and thus will serve to direct future studies that will provide fundamental insights into the function of this lncRNA.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Sean C Clark
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Allison Yankey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19101, USA.
| |
Collapse
|