1
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. These enzymes rely on dynamic, highly conserved active site domains such as the so-called "trigger loop" (TL) to accomplish steps in the transcription cycle. Mutations in the RNA polymerase II (Pol II) TL confer a spectrum of biochemical and genetic phenotypes that suggest two main classes, which decrease or increase catalysis or other nucleotide addition cycle (NAC) events. The Pol II active site relies on networks of residue interactions to function and mutations likely perturb these networks in ways that may alter mechanisms. We have undertaken a structural genetics approach to reveal residue interactions within and surrounding the Pol II TL - determining its "interaction landscape" - by deep mutational scanning in Saccharomyces cerevisiae Pol II. This analysis reveals connections between TL residues and surrounding domains, demonstrating that TL function is tightly coupled to its specific enzyme context.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Oo A, Chen Z, Cao D, Cho YJ, Liang B, Schinazi RF, Kim B. Biochemical simulation of mutation synthesis and repair during SARS-CoV-2 RNA polymerization. Virology 2024; 600:110255. [PMID: 39366027 DOI: 10.1016/j.virol.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
We biochemically simulated the mutation synthesis process of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) complex (nsp7/nsp8/nsp12) involving two sequential mechanistic steps that occur during genomic replication: misinsertion (incorporation of incorrect nucleotides) and mismatch extension. Then, we also simulated mismatch repair process catalyzed by the viral nsp10/nsp14 ExoN complex. In these mechanistic simulations, while SARS-CoV-2 RdRp displays efficient mutation synthesis capability, the viral ExoN complex was able to effectively repair the mismatch primers generated during the mutation synthesis. Also, we observed that the delayed RNA synthesis induced by mutation synthesis process was rescued by the viral ExoN activity. Collectively, our biochemical simulations suggest that SARS-CoV-2 ExoN complex may contribute to both maintenance of proper viral genetic diversity levels and successful completion of the viral large RNA genome replication by removing mismatches generated by the viral RdRp.
Collapse
Affiliation(s)
- Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zhenhang Chen
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dongdong Cao
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Bo Liang
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; Center for ViroScience and Cure, Children's Healthcare of Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; Center for ViroScience and Cure, Children's Healthcare of Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Fuller KB, Requijo RM, Schneider DA, Lucius AL. NTPs compete in the active site of RNA polymerases I and II. Biophys Chem 2024; 314:107302. [PMID: 39180852 PMCID: PMC11401760 DOI: 10.1016/j.bpc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ryan M Requijo
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Fuller KB, Jacobs RQ, Carter ZI, Cuny ZG, Schneider DA, Lucius AL. Global kinetic mechanism describing single nucleotide incorporation for RNA polymerase I reveals fast UMP incorporation. Biophys Chem 2024; 312:107281. [PMID: 38889653 PMCID: PMC11260521 DOI: 10.1016/j.bpc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3' end was fastest when the 3' terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA
| | | | - Zachary G Cuny
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. Reversible Kinetics in Multi-nucleotide Addition Catalyzed by S. cerevisiae RNA polymerase II Reveal Slow Pyrophosphate Release. J Mol Biol 2024; 436:168606. [PMID: 38729258 PMCID: PMC11162919 DOI: 10.1016/j.jmb.2024.168606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Eukaryotes express at least three nuclear DNA dependent RNA polymerases (Pols). Pols I, II, and III synthesize ribosomal (r) RNA, messenger (m) RNA, and transfer (t) RNA, respectively. Pol I and Pol III have intrinsic nuclease activity conferred by the A12.2 and C11 subunits, respectively. In contrast, Pol II requires the transcription factor (TF) IIS to confer robust nuclease activity. We recently reported that in the absence of the A12.2 subunit Pol I reverses bond formation by pyrophosphorolysis in the absence of added PPi, indicating slow PPi release. Thus, we hypothesized that Pol II, naturally lacking TFIIS, would reverse bond formation through pyrophosphorolysis. Here we report the results of transient-state kinetic experiments to examine the addition of nine nucleotides to a growing RNA chain catalyzed by Pol II. Our results indicate that Pol II reverses bond formation by pyrophosphorolysis in the absence of added PPi. We propose that, in the absence of endonuclease activity, this bond reversal may represent kinetic proofreading. Thus, given the hypothesis that Pol I evolved from Pol II through the incorporation of general transcription factors, pyrophosphorolysis may represent a more ancient form of proofreading that has been evolutionarily replaced with nuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
7
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. The A12.2 Subunit Plays an Integral Role in Pyrophosphate Release of RNA Polymerase I. J Mol Biol 2023; 435:168186. [PMID: 37355033 PMCID: PMC10529642 DOI: 10.1016/j.jmb.2023.168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA), which is the first and rate-limiting step in ribosome biosynthesis. A12.2 (A12) is a critical subunit of Pol I that is responsible for activating Pol I's exonuclease activity. We previously reported a kinetic mechanism for single-nucleotide incorporation catalyzed by Pol I lacking the A12 subunit (ΔA12 Pol I) purified from S. cerevisae and revealed that ΔA12 Pol I exhibited much slower incorporation compared to Pol I. However, it is unknown if A12 influences each nucleotide incorporation in the context of transcription elongation. Here, we show that A12 contributes to every repeating cycle of nucleotide addition and that deletion of A12 results in an entirely different kinetic mechanism compared to WT Pol I. We found that instead of one irreversible step between each nucleotide addition cycle, as reported for wild type (WT) Pol I, the ΔA12 variant requires one reversible step to describe each nucleotide addition. Reversibility fundamentally requires slow PPi release. Consistently, we show that Pol I is more pyrophosphate (PPi) concentration dependent than ΔA12 Pol I. This observation supports the model that PPi is retained in the active site of ΔA12 Pol I longer than WT Pol I. These results suggest that A12 promotes PPi release, revealing a larger role for the A12.2 subunit in the nucleotide addition cycle beyond merely activating exonuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Jacobs RQ, Bellis NF, Lucius AL, Schneider DA. Protocol for monitoring and analyzing single nucleotide incorporation by S. cerevisiae RNA polymerases. STAR Protoc 2023; 4:102191. [PMID: 36964908 PMCID: PMC10050783 DOI: 10.1016/j.xpro.2023.102191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Here we present an optimized protocol for monitoring and analyzing single nucleotide incorporation by RNA polymerases. This protocol describes the assembly of Saccharomyces cerevisiae RNA polymerase I elongation complexes in a promoter-independent system in vitro. We describe how to collect a time course using a quench-flow, a rapid mixing instrument, and subsequently resolve reactions on a polyacrylamide gel. Finally, we detail how to quantify the gel images. For complete details on the use and execution of this protocol, please refer to Appling et al. (2015).1.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Deparment of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nathan F Bellis
- Deparment of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - David A Schneider
- Deparment of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Carter ZI, Jacobs RQ, Schneider DA, Lucius AL. Transient-State Kinetic Analysis of the RNA Polymerase II Nucleotide Incorporation Mechanism. Biochemistry 2023; 62:95-108. [PMID: 36525636 PMCID: PMC10069233 DOI: 10.1021/acs.biochem.2c00608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic RNA polymerase II (Pol II) is an essential enzyme that lies at the core of eukaryotic biology. Due to its pivotal role in gene expression, Pol II has been subjected to a substantial number of investigations. We aim to further our understanding of Pol II nucleotide incorporation by utilizing transient-state kinetic techniques to examine Pol II single nucleotide addition on the millisecond time scale. We analyzed Saccharomyces cerevisiae Pol II incorporation of ATP or an ATP analog, Sp-ATP-α-S. Here we have measured the rate constants governing individual steps of the Pol II transcription cycle in the presence of ATP or Sp-ATP-α-S. These results suggest that Pol II catalyzes nucleotide incorporation by binding the next cognate nucleotide and immediately catalyzes bond formation and bond formation is either followed by a conformational change or pyrophosphate release. By comparing our previously published RNA polymerase I (Pol I) and Pol I lacking the A12 subunit (Pol I ΔA12) results that we collected under the same conditions with the identical technique, we show that Pol II and Pol I ΔA12 exhibit similar nucleotide addition mechanisms. This observation indicates that removal of the A12 subunit from Pol I results in a Pol II like enzyme. Taken together, these data further our collective understanding of Pol II's nucleotide incorporation mechanism and the evolutionary divergence of RNA polymerases across the three domains of life.
Collapse
Affiliation(s)
- Zachariah I Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama35233, United States
| |
Collapse
|
10
|
Jacobs RQ, Carter ZI, Lucius AL, Schneider DA. Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. iScience 2022; 25:105306. [PMID: 36304104 PMCID: PMC9593817 DOI: 10.1016/j.isci.2022.105306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022] Open
Abstract
Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zachariah I. Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo. Genes (Basel) 2021; 12:genes12121939. [PMID: 34946888 PMCID: PMC8701712 DOI: 10.3390/genes12121939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae has approximately 200 copies of the 35S rDNA gene, arranged tandemly on chromosome XII. This gene is transcribed by RNA polymerase I (Pol I) and the 35S rRNA transcript is processed to produce three of the four rRNAs required for ribosome biogenesis. An intergenic spacer (IGS) separates each copy of the 35S gene and contains the 5S rDNA gene, the origin of DNA replication, and the promoter for the adjacent 35S gene. Pol I is a 14-subunit enzyme responsible for the majority of rRNA synthesis, thereby sustaining normal cellular function and growth. The A12.2 subunit of Pol I plays a crucial role in cleavage, termination, and nucleotide addition during transcription. Deletion of this subunit causes alteration of nucleotide addition kinetics and read-through of transcription termination sites. To interrogate both of these phenomena, we performed native elongating transcript sequencing (NET-seq) with an rpa12Δ strain of S. cerevisiae and evaluated the resultant change in Pol I occupancy across the 35S gene and the IGS. Compared to wild-type (WT), we observed template sequence-specific changes in Pol I occupancy throughout the 35S gene. We also observed rpa12Δ Pol I occupancy downstream of both termination sites and throughout most of the IGS, including the 5S gene. Relative occupancy of rpa12Δ Pol I increased upstream of the promoter-proximal Reb1 binding site and dropped significantly downstream, implicating this site as a third terminator for Pol I transcription. Collectively, these high-resolution results indicate that the A12.2 subunit of Pol I plays an important role in transcription elongation and termination.
Collapse
|
12
|
Jacobs RQ, Huffines AK, Laiho M, Schneider DA. The small-molecule BMH-21 directly inhibits transcription elongation and DNA occupancy of RNA polymerase I in vivo and in vitro. J Biol Chem 2021; 298:101450. [PMID: 34838819 PMCID: PMC8683726 DOI: 10.1016/j.jbc.2021.101450] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are dependent upon an abundance of ribosomes to maintain rapid cell growth and proliferation. The rate-limiting step of ribosome biogenesis is ribosomal RNA (rRNA) synthesis by RNA polymerase I (Pol I). Therefore, a goal of the cancer therapeutic field is to develop and characterize Pol I inhibitors. Here, we elucidate the mechanism of Pol I inhibition by a first-in-class small-molecule BMH-21. To characterize the effects of BMH-21 on Pol I transcription, we leveraged high-resolution in vitro transcription assays and in vivo native elongating transcript sequencing (NET-seq). We find that Pol I transcription initiation, promoter escape, and elongation are all inhibited by BMH-21 in vitro. In particular, the transcription elongation phase is highly sensitive to BMH-21 treatment, as it causes a decrease in transcription elongation rate and an increase in paused Pols on the ribosomal DNA (rDNA) template. In vivo NET-seq experiments complement these findings by revealing a reduction in Pol I occupancy on the template and an increase in sequence-specific pausing upstream of G-rich rDNA sequences after BMH-21 treatment. Collectively, these data reveal the mechanism of action of BMH-21, which is a critical step forward in the development of this compound and its derivatives for clinical use.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Abigail K Huffines
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| |
Collapse
|
13
|
Ingram ZM, Schneider DA, Lucius AL. Transient-state kinetic analysis of multi-nucleotide addition catalyzed by RNA polymerase I. Biophys J 2021; 120:4378-4390. [PMID: 34509510 DOI: 10.1016/j.bpj.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
RNA polymerases execute the first step in gene expression: transcription of DNA into RNA. Eukaryotes, unlike prokaryotes, express at least three specialized nuclear multisubunit RNA polymerases (Pol I, Pol II, and Pol III). RNA polymerase I (Pol I) synthesizes the most abundant RNA, ribosomal RNA. Nearly 60% of total transcription is devoted to ribosomal RNA synthesis, making it one of the cell's most energy consuming tasks. While a kinetic mechanism for nucleotide addition catalyzed by Pol I has been reported, it remains unclear to what degree different nucleotide sequences impact the incorporation rate constants. Furthermore, it is currently unknown if the previous investigation of a single-nucleotide incorporation was sensitive to the translocation step. Here, we show that Pol I exhibits considerable variability in both kmax and K1/2values using an in vitro multi-NTP incorporation assay measuring AMP and GMP incorporations. We found the first two observed nucleotide incorporations exhibited faster kmax-values (∼200 s-1) compared with the remaining seven positions (∼60 s-1). Additionally, the average K1/2 for ATP incorporation was found to be approximately threefold higher compared with GTP, suggesting Pol I has a tighter affinity for GTP compared with ATP. Our results demonstrate that Pol I exhibits significant variability in the observed rate constant describing each nucleotide incorporation. Understanding of the differences between the Pol enzymes will provide insight on the evolutionary pressures that led to their specialized roles. Therefore, the findings resulting from this work are critically important for comparisons with other polymerases across all domains of life.
Collapse
Affiliation(s)
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| | | |
Collapse
|
14
|
Ingram ZM, Scull NW, Schneider DS, Lucius AL. Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox. Biophys Chem 2021; 279:106682. [PMID: 34634538 DOI: 10.1016/j.bpc.2021.106682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Parameter optimization or "data fitting" is a computational process that identifies a set of parameter values that best describe an experimental data set. Parameter optimization is commonly carried out using a computer program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem with this class of algorithms is that in the case of models with correlated parameters the optimized output parameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several case studies with published experimental data are presented to demonstrate the capabilities of this tool. The results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it immediately accessible to researchers with a limited programming background. We anticipate that this toolbox can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped-flow, and molecular tweezers data sets. STATEMENT OF SIGNIFICANCE: Non-linear least squares (NLLS) is a common form of parameter optimization in biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions for models involving few parameters. However, initial guess dependence is a well-known drawback of this optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.
Collapse
Affiliation(s)
- Zachariah M Ingram
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel W Scull
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David S Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Scull CE, Lucius AL, Schneider DA. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation. Biophys J 2021; 120:1883-1893. [PMID: 33737158 DOI: 10.1016/j.bpj.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotes express three DNA-dependent RNA polymerases (Pols) that are responsible for the entirety of cellular genomic expression. The three Pols have evolved to express specific cohorts of RNAs and thus have diverged both structurally and functionally to efficiently execute their specific transcriptional roles. One example of this divergence is Pol I's inclusion of a proofreading factor as a bona fide subunit, as opposed to Pol II, which recruits a transcription factor, TFIIS, for proofreading. The A12.2 (A12) subunit of Pol I shares homology with both the Rpb9 subunit of Pol II as well as the transcription factor TFIIS, which promotes RNA cleavage and proofreading by Pol II. In this study, the functional contribution of the TFIIS-like C-terminal domain and the Rpb9-like N-terminal domain of the A12 subunit are probed through mutational analysis. We found that a Pol I mutant lacking the C-terminal domain of the A12 subunit (ΔA12CTD Pol I) is slightly faster than wild-type Pol I in single-nucleotide addition, but ΔA12CTD Pol I lacks RNA cleavage activity. ΔA12CTD Pol I is likewise similar to wild-type Pol I in elongation complex stability, whereas removal of the entire A12 subunit (ΔA12 Pol I) was previously demonstrated to stabilize transcription elongation complexes. Furthermore, the ΔA12CTD Pol I is sensitive to downstream sequence context, as ΔA12CTD Pol I exposed to AT-rich downstream DNA is more arrest prone than ΔA12 Pol I. These data demonstrate that the N-terminal domain of A12 does not stimulate Pol I intrinsic RNA cleavage activity, but rather contributes to core transcription elongation properties of Pol I.
Collapse
Affiliation(s)
- Catherine E Scull
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - David A Schneider
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
16
|
Jacobs RQ, Ingram ZM, Lucius AL, Schneider DA. Defining the divergent enzymatic properties of RNA polymerases I and II. J Biol Chem 2021; 296:100051. [PMID: 33168625 PMCID: PMC7948988 DOI: 10.1074/jbc.ra120.015904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult because studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single-nucleotide and multinucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes are less stable than Pol II elongation complexes, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachariah M Ingram
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
17
|
Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 2020; 295:4782-4795. [PMID: 32060094 DOI: 10.1074/jbc.ra119.011827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.
Collapse
Affiliation(s)
- Philipp E Merkl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Michael Pilsl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Tobias Fremter
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Katrin Schwank
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Christoph Engel
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Gernot Längst
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Herbert Tschochner
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| |
Collapse
|
18
|
Scull CE, Clarke AM, Lucius AL, Schneider DA. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Scull CE, Clarke AM, Lucius AL, Schneider DA. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I. J Biol Chem 2019; 295:1288-1299. [PMID: 31843971 DOI: 10.1074/jbc.ra119.011354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
The sequence of the DNA template has long been thought to influence the rate of transcription by DNA-dependent RNA polymerases, but the influence of DNA sequence on transcription elongation properties of eukaryotic RNA polymerase I (Pol I) from Saccharomyces cerevisiae has not been defined. In this study, we observe changes in dinucleotide production, transcription elongation complex stability, and Pol I pausing in vitro in response to downstream DNA. In vitro studies demonstrate that AT-rich downstream DNA enhances pausing by Pol I and inhibits Pol I nucleolytic cleavage activity. Analysis of Pol I native elongating transcript sequencing data in Saccharomyces cerevisiae suggests that these downstream sequence elements influence Pol I in vivo Native elongating transcript sequencing studies reveal that Pol I occupancy increases as downstream AT content increases and decreases as downstream GC content increases. Collectively, these data demonstrate that the downstream DNA sequence directly impacts the kinetics of transcription elongation prior to the sequence entering the active site of Pol I both in vivo and in vitro.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrew M Clarke
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|