1
|
Song P, Huang Q, Li W, Li M, Liu Z. Decomposition of Forces in Protein: Methodology and General Properties. J Chem Inf Model 2024. [PMID: 39262153 DOI: 10.1021/acs.jcim.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In contrast to the central role played by the structure of biomolecules, the complementary force-based view has received little attention in past studies. Here, we proposed a simple method for the force decomposition of multibody interactions and provided some techniques to analyze and visualize the general behavior of forces in proteins. It was shown that atomic forces fluctuate at a magnitude of about 3000 pN, which is huge in the context of cell biology. Remarkably, the average scalar product between atomic force and displacement universally approximates -3kBT. This is smaller by an order of magnitude than the simple product of their fluctuation magnitudes due to the unexpectedly weak correlation between the directions of force and displacement. The pairwise forces are highly anisotropic, with elongated fluctuation ellipsoids. Residue-residue forces can be attractive or repulsive (despite being more likely to be attractive), forming some kind of tensegrity structure stabilized by a complicated network of forces. Being able to understand and predict the interaction network provides a basis for rational drug design and uncovering molecular recognition mechanisms.
Collapse
Affiliation(s)
- Pengbo Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiaojing Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenyu Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maodong Li
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
2
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
3
|
Samanta R, Matysiak S. Decoupling epistasis mechanisms in biomacromolecules. Biophys J 2023; 122:1574-1576. [PMID: 37080208 PMCID: PMC10183367 DOI: 10.1016/j.bpj.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Affiliation(s)
- Riya Samanta
- Biophysics Graduate Program, The University of Maryland, College Park, College Park, Maryland
| | - Silvina Matysiak
- Fischell Department of Bioengineering, The University of Maryland, College Park, College Park, Maryland.
| |
Collapse
|
4
|
Samanta R, Sanghvi N, Beckett D, Matysiak S. Emergence of allostery through reorganization of protein residue network architecture. J Chem Phys 2023; 158:085104. [PMID: 36859102 PMCID: PMC9974213 DOI: 10.1063/5.0136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.
Collapse
Affiliation(s)
- Riya Samanta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Neel Sanghvi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr Res Struct Biol 2021; 3:257-267. [PMID: 34704074 PMCID: PMC8526763 DOI: 10.1016/j.crstbi.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs. Evolution of protein structures occurs at the level of global interaction network. More than 70% of the protein residues are weakly or marginally coupled. Functional ‘sector’ regions are a manifestation of marginal coupling. Coupling indices vary across the entire proteins in extant-ancient and natural-designed pairs. The proposed methodology can be used to understand allostery and epistasis.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
6
|
Gárate F, Dokas S, Lanfranco MF, Canavan C, Wang I, Correia JJ, Maillard RA. cAMP is an allosteric modulator of DNA-binding specificity in the cAMP receptor protein from Mycobacterium tuberculosis. J Biol Chem 2021; 296:100480. [PMID: 33640453 PMCID: PMC8026907 DOI: 10.1016/j.jbc.2021.100480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
Allosteric proteins with multiple subunits and ligand-binding sites are central in regulating biological signals. The cAMP receptor protein from Mycobacterium tuberculosis (CRPMTB) is a global regulator of transcription composed of two identical subunits, each one harboring structurally conserved cAMP- and DNA-binding sites. The mechanisms by which these four binding sites are allosterically coupled in CRPMTB remain unclear. Here, we investigate the binding mechanism between CRPMTB and cAMP, and the linkage between cAMP and DNA interactions. Using calorimetric and fluorescence-based assays, we find that cAMP binding is entropically driven and displays negative cooperativity. Fluorescence anisotropy experiments show that apo-CRPMTB forms high-order CRPMTB–DNA oligomers through interactions with nonspecific DNA sequences or preformed CRPMTB–DNA complexes. Moreover, we find that cAMP prevents and reverses the formation of CRPMTB–DNA oligomers, reduces the affinity of CRPMTB for nonspecific DNA sequences, and stabilizes a 1-to-1 CRPMTB–DNA complex, but does not increase the affinity for DNA like in the canonical CRP from Escherichia coli (CRPEcoli). DNA-binding assays as a function of cAMP concentration indicate that one cAMP molecule per homodimer dissociates high-order CRPMTB–DNA oligomers into 1-to-1 complexes. These cAMP-mediated allosteric effects are lost in the double-mutant L47P/E178K found in CRP from Mycobacterium bovis Bacille Calmette-Guérin (CRPBCG). The functional behavior, thermodynamic stability, and dimerization constant of CRPBCG are not due to additive effects of L47P and E178K, indicating long-range interactions between these two sites. Altogether, we provide a previously undescribed archetype of cAMP-mediated allosteric regulation that differs from CRPEcoli, illustrating that structural homology does not imply allosteric homology.
Collapse
Affiliation(s)
- Fernanda Gárate
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Stephen Dokas
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Maria Fe Lanfranco
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Clare Canavan
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Irina Wang
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - John J Correia
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA.
| |
Collapse
|