1
|
Mali A, Nayak NU, van Doesburg J, Fokkink R, van Riessen K, de Kruijf R, Srinivas M. Polymeric (Poly(lactic- co-glycolic acid)) Particles Entrapping Perfluorocarbons Are Stable for a Minimum of Six Years. ACS OMEGA 2025; 10:6768-6779. [PMID: 40028150 PMCID: PMC11865981 DOI: 10.1021/acsomega.4c08663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
Polymeric particles, particularly poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), have gained widespread utility in drug delivery, including their incorporation into established clinical formulations. However, their significance is enhanced when loaded with perfluorocarbons (PFCs). This integration enables precise in vivo imaging and quantification using advanced techniques such as 19F nuclear magnetic resonance (NMR) or magnetic resonance imaging. These PFC-loaded nanoparticles offer substantial biomedical advantages, including quantitative in vivo cell tracking and trackable drug delivery. It is imperative to develop a stable nanoformulation with well-characterized parameters (size, PDI, and PFC content) to facilitate their translation into clinical trials. Another crucial aspect related to their clinical translation is the need for practical storage conditions that are convenient for clinical handling and long-term storage. This study provides compelling evidence of the exceptional long-term stability of PLGA-PFCE (perfluoro-15-crown-5-ether) NPs synthesized via a single-oil-in-water method. When stored at -20 °C, these NPs exhibit remarkable stability for over 6 years. Furthermore, our investigations extend to the behavior of the NPs in powder and suspension forms, demonstrating resilience even after enduring multiple freeze-thaw cycles. Additionally, we explore their stability under various conditions, including water and culture medium, revealing robustness at 4 °C, room temperature (RT), and 37 °C for up to 30 days.
Collapse
Affiliation(s)
- Alvja Mali
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Navya U. Nayak
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Jessie van Doesburg
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Remco Fokkink
- Department
of Agrotechnology and Food Sciences, Physical Chemistry and Soft Matter, Wageningen University, Wageningen 6700 EK, Netherlands
| | - Koen van Riessen
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
| | - Robbin de Kruijf
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
- Cenya Imaging
BV, Amsterdam 1052RK,The Netherlands
| | - Mangala Srinivas
- Department
of Cell Biology and Immunology, Wageningen
University & Research, Wageningen 6708WD, The Netherlands
- Cenya Imaging
BV, Amsterdam 1052RK,The Netherlands
| |
Collapse
|
2
|
Tunçel A, Maschauer S, Prante O, Yurt F. In Vitro Assessment of 177Lu-Labeled Trastuzumab-Targeted Mesoporous Carbon@Silica Nanostructure for the Treatment of HER2-Positive Breast Cancer. Pharmaceuticals (Basel) 2024; 17:732. [PMID: 38931400 PMCID: PMC11206869 DOI: 10.3390/ph17060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
This study assessed the effectiveness of a trastuzumab-targeted 177Lu-labeled mesoporous Carbon@Silica nanostructure (DOTA@TRA/MC@Si) for HER2-positive breast cancer treatment, focusing on its uptake, internalization, and efflux in breast cancer cells. The synthesized PEI-MC@Si nanocomposite was reacted with DOTA-NHS-ester, confirmed by the Arsenazo(III) assay. Following this, TRA was conjugated to the DOTA@PEI-MC@Si for targeting. DOTA@PEI-MC@Si and DOTA@TRA/MC@Si nanocomposites were labeled with 177Lu, and their efficacy was evaluated through in vitro radiolabeling experiments. According to the results, the DOTA@TRA/MC@Si nanocomposite was successfully labeled with 177Lu, yielding a radiochemical yield of 93.0 ± 2.4%. In vitro studies revealed a higher uptake of the [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite in HER2-positive SK-BR-3 cells (44.0 ± 4.6% after 24 h) compared to MDA-MB-231 cells (21.0 ± 2.3%). The IC50 values for TRA-dependent uptake in the SK-BR-3 and BT-474 cells were 0.9 µM and 1.3 µM, respectively, indicating affinity toward HER-2 receptor-expressing cells. The lipophilic distribution coefficients of the radiolabeled nanocomposites were determined to be 1.7 ± 0.3 for [177Lu]Lu-DOTA@TRA/MC@Si and 1.5 ± 0.2 for [177Lu]Lu-DOTA@PEI-MC@Si, suggesting sufficient passive transport through the cell membrane and increased accumulation in target tissues. The [177Lu]Lu-DOTA@TRA/MC@Si nanocomposite showed an uptake into HER2-positive cell lines, marking a valuable step toward the development of a nanoparticle-based therapeutic agent for an improved treatment strategy for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Ayça Tunçel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova 35100, Turkey;
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova 35100, Turkey;
| |
Collapse
|
3
|
Ghosh S, Lee SJ, Hsu JC, Chakraborty S, Chakravarty R, Cai W. Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:4-26. [PMID: 38274040 PMCID: PMC10806911 DOI: 10.1021/cbmi.3c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
Brachytherapy is an established treatment modality that has been globally utilized for the therapy of malignant solid tumors. However, classic therapeutic sealed sources used in brachytherapy must be surgically implanted directly into the tumor site and removed after the requisite period of treatment. In order to avoid the trauma involved in the surgical procedures and prevent undesirable radioactive distribution at the cancerous site, well-dispersed radiolabeled nanomaterials are now being explored for brachytherapy applications. This emerging field has been coined "nanoscale brachytherapy". Despite present-day advancements, an ongoing challenge is obtaining an advanced, functional nanomaterial that concurrently incorporates features of high radiolabeling yield, short labeling time, good radiolabeling stability, and long tumor retention time without leakage of radioactivity to the nontargeted organs. Further, attachment of suitable targeting ligands to the nanoplatforms would widen the nanoscale brachytherapy approach to tumors expressing various phenotypes. Molecular imaging using radiolabeled nanoplatforms enables noninvasive visualization of cellular functions and biological processes in vivo. In vivo imaging also aids in visualizing the localization and retention of the radiolabeled nanoplatforms at the tumor site for the requisite time period to render safe and effective therapy. Herein, we review the advancements over the last several years in the synthesis and use of functionalized radiolabeled nanoplatforms as a noninvasive substitute to standard brachytherapy sources. The limitations of present-day brachytherapy sealed sources are analyzed, while highlighting the advantages of using radiolabeled nanoparticles (NPs) for this purpose. The recent progress in the development of different radiolabeling methods, delivery techniques and nanoparticle internalization mechanisms are discussed. The preclinical studies performed to date are summarized with an emphasis on the current challenges toward the future translation of nanoscale brachytherapy in routine clinical practices.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sophia J. Lee
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jessica C. Hsu
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sudipta Chakraborty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Weibo Cai
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Mali A, Verbeelen M, White PB, Staal AHJ, van Riessen NK, Cadiou C, Chuburu F, Koshkina O, Srinivas M. The internal structure of gadolinium and perfluorocarbon-loaded polymer nanoparticles affects 19F MRI relaxation times. NANOSCALE 2023; 15:18068-18079. [PMID: 37916411 DOI: 10.1039/d3nr04577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
19F magnetic resonance imaging (19F MRI) is an emerging technique for quantitative imaging in novel therapies, such as cellular therapies and theranostic nanocarriers. Nanocarriers loaded with liquid perfluorocarbon (PFC) typically have a (single) core-shell structure with PFC in the core due to the poor miscibility of PFC with organic and inorganic solvents. Paramagnetic relaxation enhancement acts only at a distance of a few angstroms. Thus, efficient modulation of the 19F signal is possible only with fluorophilic PFC-soluble chelates. However, these chelates cannot interact with the surrounding environment and they might result in image artifacts. Conversely, chelates bound to the nanoparticle shell typically have a minimal effect on the 19F signal and a strong impact on the aqueous environment. We show that the confinement of PFC in biodegradable polymeric nanoparticles (NPs) with a multicore structure enables the modulation of longitudinal (T1) and transverse (T2) 19F relaxation, as well as proton (1H) signals, using non-fluorophilic paramagnetic chelates. We compared multicore NPs versus a conventional single core structure, where the PFC is encapsulated in the core(s) and the chelate in the surrounding polymeric matrix. This modulated relaxation also makes multicore NPs sensitive to various acidic pH environments, while preserving their stability. This effect was not observed with single core nanocapsules (NCs). Importantly, paramagnetic chelates affected both T1 and T219F relaxation in multicore NPs, but not in single core NCs. Both relaxation times of the 19F nucleus were enhanced with an increasing concentration of the paramagnetic chelate. Moreover, as the polymeric matrix remained water permeable, proton enhancement additionally was observed in MRI.
Collapse
Affiliation(s)
- Alvja Mali
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot Verbeelen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Alexander H J Staal
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cyril Cadiou
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
| | - Françoise Chuburu
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
| | - Olga Koshkina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Mangala Srinivas
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Cenya Imaging B.V., Amsterdam, The Netherlands
| |
Collapse
|
5
|
Chakravarty R, Sen N, Ghosh S, Sarma HD, Guleria A, Singh KK, Chakraborty S. Flow synthesis of intrinsically radiolabeled and renal-clearable ultrasmall [198Au]Au nanoparticles in a PTFE microchannel. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
In Vivo PET Imaging of Monocytes Labeled with [ 89Zr]Zr-PLGA-NH 2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models. Cancers (Basel) 2021; 13:cancers13205069. [PMID: 34680219 PMCID: PMC8533969 DOI: 10.3390/cancers13205069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
The exponential growth of research on cell-based therapy is in major need of reliable and sensitive tracking of a small number of therapeutic cells to improve our understanding of the in vivo cell-targeting properties. 111In-labeled poly(lactic-co-glycolic acid) with a primary amine endcap nanoparticles ([111In]In-PLGA-NH2 NPs) were previously used for cell labeling and in vivo tracking, using SPECT/CT imaging. However, to detect a low number of cells, a higher sensitivity of PET is preferred. Therefore, we developed 89Zr-labeled NPs for ex vivo cell labeling and in vivo cell tracking, using PET/MRI. We intrinsically and efficiently labeled PLGA-NH2 NPs with [89Zr]ZrCl4. In vitro, [89Zr]Zr-PLGA-NH2 NPs retained the radionuclide over a period of 2 weeks in PBS and human serum. THP-1 (human monocyte cell line) cells could be labeled with the NPs and retained the radionuclide over a period of 2 days, with no negative effect on cell viability (specific activity 279 ± 10 kBq/106 cells). PET/MRI imaging could detect low numbers of [89Zr]Zr-THP-1 cells (10,000 and 100,000 cells) injected subcutaneously in Matrigel. Last, in vivo tracking of the [89Zr]Zr-THP-1 cells upon intravenous injection showed specific accumulation in local intramuscular Staphylococcus aureus infection and infiltration into MDA-MB-231 tumors. In conclusion, we showed that [89Zr]Zr-PLGA-NH2 NPs can be used for immune-cell labeling and subsequent in vivo tracking of a small number of cells in different disease models.
Collapse
|