1
|
Umeno T, Takemoto H, Oba M. Plasmid DNA delivery using arginine-rich cell-penetrating L/D-peptides containing α-aminoisobutyric acids. Org Biomol Chem 2025. [PMID: 40325951 DOI: 10.1039/d5ob00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The relationship between intracellular uptake efficacy and the folding behavior of arginine-rich cell-penetrating L/D-peptides with α,α-disubstituted α-amino acids in plasmid DNA (pDNA) delivery was examined. Nano-sized complexes formed from pDNA and L/D-peptides efficiently traversed the cell membrane regardless of the peptide conformation. This finding represents a significant deviation from previously reported covalent cargo delivery methods using cell penetrating peptides with L- and D-amino acids.
Collapse
Affiliation(s)
- Tomohiro Umeno
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Hiroyasu Takemoto
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| |
Collapse
|
2
|
Tamura S, Tsuji G, Demizu Y. Screening and evaluation of hydrophobic cell-penetrating peptides for antisense oligonucleotide delivery. Bioorg Med Chem 2025; 126:118223. [PMID: 40327996 DOI: 10.1016/j.bmc.2025.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Antisense oligonucleotides (ASOs) are promising therapeutic agents targeting intracellular RNA, yet their clinical application is limited by poor membrane permeability. To overcome this challenge, we investigated hydrophobic cell-penetrating peptides (CPPs) as alternative delivery vectors. Ten hydrophobic CPPs were synthesized and screened for cellular uptake using live-cell fluorescence imaging. Selected CPPs were conjugated to a chemically modified ASO via click chemistry, and their intracellular delivery and antisense efficacy were evaluated using a splicing reporter assay in HeLa 705 cells. While certain CPPs, such as MPG, showed high membrane permeability, conjugation with ASOs did not always translate to enhanced antisense activity. Notably, among the evaluated CPP-ASO conjugates, SP-ASO exhibited the most potent functional activity despite moderate uptake. This finding suggests that factors beyond membrane permeability, such as endosomal escape, intracellular trafficking, or nuclear delivery efficiency, may critically influence the overall efficacy. Fluorescence microscopy confirmed lysosomal entrapment of both naked and CPP-conjugated ASOs. These findings emphasize the importance of rational design strategies that address endosomal release to maximize the therapeutic potential of CPP-ASO conjugates.
Collapse
Affiliation(s)
- Saki Tamura
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama 700-8530, Japan.
| |
Collapse
|
3
|
Fujita M, Ito T, Inokuma A, Saito K, Hirano M, Yokoo H, Demizu Y. Palindromic peptide foldamers: a strategy for structural stability and cellular uptake. Org Biomol Chem 2025. [PMID: 40314437 DOI: 10.1039/d5ob00430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Mid-sized peptide therapeutics have gained significant attention for their potential to overcome the limitations of small molecules and biologics. However, their clinical application is often hindered by poor stability and low cellular permeability. In this study, we designed a palindromic peptide foldamer composed of L-leucine and L-arginine residues to investigate its structural and functional properties. CD spectroscopy confirmed that the designed peptide adopts a stable α-helical conformation, even under denaturing conditions. Cellular uptake studies using LC-MS/MS and flow cytometry indicated efficient intracellular delivery, suggesting that the peptide's amphiphilic structure enhances membrane permeability. These findings provide valuable insights into the rational design of structurally stable and functionally enhanced peptide therapeutics.
Collapse
Affiliation(s)
- Minami Fujita
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Akihiko Inokuma
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Motoharu Hirano
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Allen R, Yokota T. Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids. Molecules 2024; 29:5997. [PMID: 39770086 PMCID: PMC11677605 DOI: 10.3390/molecules29245997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy. Upon administration, TNAs primarily enter cells through endocytosis, becoming trapped inside membrane-bound vesicles known as endosomes. Studies estimate that only 1-2% of TNAs successfully escape endosomal compartments to reach the cytosol, and in some cases the nucleus, where they bind target mRNA and exert their therapeutic effect. Endosomal entrapment and inefficient nuclear localization are therefore critical bottlenecks in the therapeutic application of TNAs. This review explores the current understanding of TNA endosomal escape and nuclear transport along with strategies aimed at overcoming these challenges, including the use of endosomal escape agents, peptide-TNA conjugates, non-viral delivery vehicles, and nuclear localization signals. By improving both endosomal escape and nuclear localization, significant advances in TNA-based therapeutics can be realized, ultimately expanding their clinical utility.
Collapse
Affiliation(s)
- Randall Allen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Chen XC, Kong XW, Chen P, Li ZQ, Huang N, Zhao Z, Yang J, Zhao GX, Mo Q, Lu YT, Huang XM, Feng GK, Zeng MS. Design and characterization of defined alpha-helix mini-proteins with intrinsic cell permeability. Comput Biol Chem 2024; 113:108271. [PMID: 39504601 DOI: 10.1016/j.compbiolchem.2024.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Proteins with intrinsic cell permeability that can access intracellular targets represent a promising strategy for novel drug development; however, a general design principle is still lacking. Here, we established a library of 46,678 de novo-designed mini-proteins and performed cell permeability screening via phage display. Analyses revealed a characteristic neighboring distribution of positive charges across helices among enriched mini-proteins of CPP7, CPP11, CPP55, CPP109 and CPP112. Compared with the state-of-the-art cell-penetrating mini-protein ZF5.3, the optimized mini-protein CPP11D36R exhibited a sevenfold increase in cell permeability. Endocytosis uptake and early endosome release are the key penetrating mechanisms. A machine learning model with high-throughput data achieved an F1 score of 0.41, significantly outperforming the previously reported CPP prediction models, including MLACP, CPPpred and CellPPD, by 41 %. Overall, our findings validate the effectiveness of a helical structure with a cationic distribution as a design principle on a large scale and present a robust approach for the development of cell-permeable mini-protein drugs.
Collapse
Affiliation(s)
- Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China; Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zi-Qian Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Nan Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Zheng Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qing Mo
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yu-Tong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiao-Ming Huang
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| |
Collapse
|
6
|
Siekierska I, Burmistrz M, Trylska J. Evaluating delivery of peptide nucleic acids to Gram-negative bacteria using differently linked membrane-active peptides and their stapled analogs. Bioorg Med Chem Lett 2024; 114:129993. [PMID: 39426432 DOI: 10.1016/j.bmcl.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Antisense oligonucleotides have been developed as therapeutic compounds, with peptide nucleic acid (PNA) emerging as a promising nucleic acid mimic for antimicrobial applications. To be effective, PNAs must be internalized into bacterial cells, as they are not naturally absorbed. A strategy to improve PNA membrane penetration and cellular uptake involves covalently conjugating them to cell-penetrating peptides. However, these membrane-active peptides can exhibit cytotoxicity, and their efficiency as PNA carriers needs to be enhanced. Therefore, we explored new peptide-PNA conjugates and their linkers to understand how they affect PNA uptake into bacteria. We conjugated PNA to two peptides, anoplin and (KFF)3K, along with their structurally stabilized hydrocarbon-stapled derivatives, and evaluated their transport into various bacterial strains. The PNA sequence targeted bacterial mRNA encoding the essential acyl carrier protein. As linkages, we used either a non-cleavable 8-amino-2,6-dioxaoctanoyl (ethylene glycol, eg1) linker or a reducible disulfide bridge. We found that the hydrocarbon-stapled peptides did not enhance PNA delivery, despite the strong inner- and outer-membrane-penetrating capabilities of the standalone peptides. Additionally, the disulfide bridge linkage, which is cleavable in the bacterial cytoplasm, decreased the antimicrobial activity of the peptide-PNA conjugates. Notably, we identified anoplin as a new potent PNA carrier peptide, with the anoplin-eg1-PNA conjugate demonstrating antibacterial activity against E. coli and S. Typhimurium strains in the 2-4 µM range.
Collapse
Affiliation(s)
- Izabela Siekierska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
7
|
Lyu F, Hakariya H, Hiraoka H, Li Z, Matsubara N, Soo Y, Hashiya F, Abe N, Shu Z, Nakamoto K, Kimura Y, Abe H. Intracellular Delivery of Antisense Oligonucleotides by Tri-Branched Cyclic Disulfide Units. ChemMedChem 2024; 19:e202400472. [PMID: 38957922 DOI: 10.1002/cmdc.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Therapeutic oligonucleotides, such as antisense DNA, show promise in treating previously untreatable diseases. However, their applications are still hindered by the poor membrane permeability of naked oligonucleotides. Therefore, it is necessary to develop efficient methods for intracellular oligonucleotide delivery. Previously, our group successfully developed disulfide-based Membrane Permeable Oligonucleotides (MPON), which achieved enhanced cellular uptake and gene silencing effects through an endocytosis-free uptake mechanism. Herein, we report a new molecular design for the next generation of MPON, called trimer MPON. The trimer MPON consists of a tri-branched backbone, three α-lipoic acid units, and a spacer linker between the oligonucleotides and tri-branched cyclic disulfide unit. We describe the design, synthesis, and functional evaluation of the trimer MPON, offering new insights into the molecular design for efficient oligonucleotide delivery.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hayase Hakariya
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Noriaki Matsubara
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yonghao Soo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Kosuke Nakamoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
8
|
Tomohara K, Kusaba S, Masui M, Uchida T, Nambu H, Nose T. Ammonium carboxylates in the ammonia-Ugi reaction: one-pot synthesis of α,α-disubstituted amino acid derivatives including unnatural dipeptides. Org Biomol Chem 2024; 22:6999-7005. [PMID: 39118586 DOI: 10.1039/d4ob00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Despite the remarkable developments of the Ugi reaction and its variants, the use of ammonia in the Ugi reaction has long been recognized as impractical and unsuccessful. Indeed, the ammonia-Ugi reaction often requires harsh reaction conditions, such as heating and microwave irradiation, and competes with the Passerini reaction, thereby resulting in low yields. This study describes a robust and practical ammonia-Ugi reaction protocol. Using originally prepared ammonium carboxylates in trifluoroethanol, the ammonia-Ugi reaction proceeded at room temperature in high yields and showed a broad substrate scope, thus synthesizing a variety of α,α-disubstituted amino acid derivatives, including unnatural dipeptides. The reaction required no condensing agents and proceeded without racemization of the chiral stereocenter of α-amino acids. Furthermore, using this protocol, we quickly synthesized a novel dipeptide, D-Leu-Aic-NH-CH2Ph(p-F), which exhibited a potent inhibitory activity against α-chymotrypsin with a Ki value of 0.091 μM.
Collapse
Affiliation(s)
- Keisuke Tomohara
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Satoru Kusaba
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Mana Masui
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisanori Nambu
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
9
|
Dongrui Z, Miyamoto M, Yokoo H, Demizu Y. Innovative peptide architectures: advancements in foldamers and stapled peptides for drug discovery. Expert Opin Drug Discov 2024; 19:699-723. [PMID: 38753534 DOI: 10.1080/17460441.2024.2350568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Peptide foldamers play a critical role in pharmaceutical research and biomedical applications. This review highlights recent (post-2020) advancements in novel foldamers, synthetic techniques, and their applications in pharmaceutical research. AREAS COVERED The authors summarize the structures and applications of peptide foldamers such as α, β, γ-peptides, hydrocarbon-stapled peptides, urea-type foldamers, sulfonic-γ-amino acid foldamers, aromatic foldamers, and peptoids, which tackle the challenges of traditional peptide drugs. Regarding antimicrobial use, foldamers have shown progress in their potential against drug-resistant bacteria. In drug development, peptide foldamers have been used as drug delivery systems (DDS) and protein-protein interaction (PPI) inhibitors. EXPERT OPINION These structures exhibit resistance to enzymatic degradation, are promising for therapeutic delivery, and disrupt crucial PPIs associated with diseases such as cancer with specificity, versatility, and stability, which are useful therapeutic properties. However, the complexity and cost of their synthesis, along with the necessity for thorough safety and efficacy assessments, necessitate extensive research and cross-sector collaboration. Advances in synthesis methods, computational modeling, and targeted delivery systems are essential for fully realizing the therapeutic potential of foldamers and integrating them into mainstream medical treatments.
Collapse
Affiliation(s)
- Zhou Dongrui
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maho Miyamoto
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, Kita, Japan
| |
Collapse
|
10
|
Lessl AL, Pöhmerer J, Lin Y, Wilk U, Höhn M, Hörterer E, Wagner E, Lächelt U. mCherry on Top: A Positive Read-Out Cellular Platform for Screening DMD Exon Skipping Xenopeptide-PMO Conjugates. Bioconjug Chem 2023; 34:2263-2274. [PMID: 37991502 PMCID: PMC10739591 DOI: 10.1021/acs.bioconjchem.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) are a special type of antisense oligonucleotides (ASOs) that can be used as therapeutic modulators of pre-mRNA splicing. Application of nucleic-acid-based therapeutics generally requires suitable delivery systems to enable efficient transport to intended tissues and intracellular targets. To identify potent formulations of PMOs, we established a new in vitro-in vivo screening platform based on mdx exon 23 skipping. Here, a new in vitro positive read-out system (mCherry-DMDEx23) is presented that is sensitive toward the PMO(Ex23) sequence mediating DMD exon 23 skipping and, in this model, functional mCherry expression. After establishment of the reporter system in HeLa cells, a set of amphiphilic, ionizable xenopeptides (XPs) was screened in order to identify potent carriers for PMO delivery. The identified best-performing PMO formulation with high splice-switching activity at nanomolar concentrations in vitro was then translated to in vivo trials, where exon 23 skipping in different organs of healthy BALB/c mice was confirmed. The predesigned in vitro-in vivo workflow enables evaluation of PMO(Ex23) carriers without change of the PMO sequence and formulation composition. Furthermore, the identified PMO-XP conjugate formulation was found to induce highly potent exon skipping in vitro and redistributed PMO activity in different organs in vivo.
Collapse
Affiliation(s)
- Anna-Lina Lessl
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jana Pöhmerer
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Wilk
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Elisa Hörterer
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
- Center
for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
- Center
for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
11
|
Ito T, Yokoo H, Kato T, Doi M, Demizu Y. Sculpting Secondary Structure of a Cyclic Peptide: Conformational Analysis of a Cyclic Hexapeptide Containing a Combination of l-Leu, d-Leu, and Aib Residues. ACS OMEGA 2023; 8:44106-44111. [PMID: 38027316 PMCID: PMC10666233 DOI: 10.1021/acsomega.3c06397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
We have previously reported that cyclo(l-Leu-d-Leu-Aib-l-Leu-d-Leu-Aib) (2), a cyclic hexapeptide consisting of heterochiral l-Leu and d-Leu (l-Leu-d-Leu) residues with achiral 2-aminoisobutyric acid (Aib) residues, forms a figure-8 conformation. In this study, we newly designed cyclo(l-Leu-d-Leu-Aib-d-Leu-l-Leu-Aib)+ (4), an epimer of 2, and examined the conformational differences between 2 and 4 by X-ray crystallographic analysis. Peptide 4 formed a planar cyclic conformation with an antiparallel β-sheet hydrogen-bonding pattern. This investigation demonstrates the potential to manipulate the molecular conformation of cyclic peptides by simply arranging the l- and d-amino acids and emphasizes that diverse conformations can be obtained by using cyclic peptides. Harnessing cyclic peptides as platforms for distinct molecular structures is a promising approach to expanding the chemical space for various applications.
Collapse
Affiliation(s)
- Takahito Ito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hidetomo Yokoo
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Takuma Kato
- Faculty
of Pharmacy, Osaka Medical and Pharmaceutical
University, Takatsuki, Osaka 569-8686, Japan
| | - Mitsunobu Doi
- Faculty
of Pharmacy, Osaka Medical and Pharmaceutical
University, Takatsuki, Osaka 569-8686, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Yokohama, Kanagawa 236-0027, Japan
| |
Collapse
|
12
|
Kadota K, Mikami T, Kohata A, Morimoto J, Sando S, Aikawa K, Okazoe T. Synthesis of Short Peptides with Perfluoroalkyl Side Chains and Evaluation of Their Cellular Uptake Efficiency. Chembiochem 2023; 24:e202300374. [PMID: 37430341 DOI: 10.1002/cbic.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
With an increasing demand for macromolecular biotherapeutics, the issue of their poor cell-penetrating abilities requires viable and relevant solutions. Herein, we report tripeptides bearing an amino acid with a perfluoroalkyl (RF ) group adjacent to the α-carbon. RF -containing tripeptides were synthesized and evaluated for their ability to transport a conjugated hydrophilic dye (Alexa Fluor 647) into the cells. RF -containing tripeptides with the fluorophore showed high cellular uptake efficiency and none of them were cytotoxic. Interestingly, we demonstrated that the absolute configuration of perfluoroalkylated amino acids (RF -AAs) affects not only nanoparticle formation but also the cell permeability of the tripeptides. These novel RF -containing tripeptides are potentially useful as short and noncationic cell-penetrating peptides (CPPs).
Collapse
Affiliation(s)
- Koji Kadota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Toshiki Mikami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
13
|
Nag A, Mafi A, Das S, Yu MB, Alvarez-Villalonga B, Kim SK, Su Y, Goddard WA, Heath JR. Stereochemical engineering yields a multifunctional peptide macrocycle inhibitor of Akt2 by fine-tuning macrocycle-cell membrane interactions. Commun Chem 2023; 6:95. [PMID: 37202473 DOI: 10.1038/s42004-023-00890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Macrocycle peptides are promising constructs for imaging and inhibiting extracellular, and cell membrane proteins, but their use for targeting intracellular proteins is typically limited by poor cell penetration. We report the development of a cell-penetrant high-affinity peptide ligand targeted to the phosphorylated Ser474 epitope of the (active) Akt2 kinase. This peptide can function as an allosteric inhibitor, an immunoprecipitation reagent, and a live cell immunohistochemical staining reagent. Two cell penetrant stereoisomers were prepared and shown to exhibit similar target binding affinities and hydrophobic character but 2-3-fold different rates of cell penetration. Experimental and computational studies resolved that the ligands' difference in cell penetration could be assigned to their differential interactions with cholesterol in the membrane. These results expand the tool kit for designing new chiral-based cell-penetrant ligands.
Collapse
Affiliation(s)
- Arundhati Nag
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Samir Das
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Mary Beth Yu
- California Institute of Technology, Pasadena, CA, USA
| | | | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Yapeng Su
- California Institute of Technology, Pasadena, CA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - James R Heath
- California Institute of Technology, Pasadena, CA, USA.
- Institute for Systems Biology, Seattle, WA, USA.
| |
Collapse
|
14
|
Liu H, Li Y, Du S, Wang C, Li Y, Cao R, Shi W, Liu S, He J. Studies on the Effect of Lipofectamine and Cell-Penetrating Peptide on the Properties of 10-23 DNAzyme. Molecules 2023; 28:molecules28093942. [PMID: 37175352 PMCID: PMC10179765 DOI: 10.3390/molecules28093942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cationic polymeric materials and cell-penetrating peptides (CPPs) were often used as the delivery vectors in the evaluation of nucleic acid therapeutics. 10-23 DNAzyme is a kind of potential antisense therapeutics by catalytic cleavage of the disease-related RNAs. Here, lipofectamine 2000 and Tat peptide were evaluated for their effect on the catalytic activity of 10-23 DNAzyme, with the observed rate constant, thermal stability, CD spectra, and PAGE analysis, with a duplex DNA mimicking DNAzyme-substrate as a control. It was shown that the cationic carriers had a negative effect on the catalytic performance of the 10-23 DNAzyme. Significantly, the destabilizing effect of the cationic carriers on the duplex formation was noteworthy, as a duplex formation is an essential prerequisite in the silencing mechanisms of antisense and RNAi.
Collapse
Affiliation(s)
- Huanhuan Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Yuexiang Li
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Ruiyuan Cao
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| | - Shihui Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasurements, Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China
| |
Collapse
|
15
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
16
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|