1
|
Nazari M, Emamzadeh R, Masoudi-Khoram N, Nazari M. Immobilization of albumin binding domain (ABD) on Sepharose 4B and magnetic particle for efficient single-step purification of human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1261:124655. [PMID: 40403581 DOI: 10.1016/j.jchromb.2025.124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
Human serum albumin (HSA) is an important protein in plasma with various biological functions in the human body. Due to its unique features in the binding and transfer of ligands and pharmaceutical molecules, HSA is extensively used in therapeutics and pharmaceutical approaches. Commercial albumin is produced by a multi-step process of plasma fractionation. However, this traditional method has some limitations such as risk of contamination, low quality, and quantity of the purified final protein. In this study, we developed two affinity chromatography platforms for the purification of human serum albumin. The recombinant albumin-binding domain (ABD) was expressed and purified using molecular biology techniques. Two types of commercial beads-Cyanogen bromide-activated Sepharose 4B and amine-functionalized magnetic particles-were then functionalized with the recombinant ABD. Protein purification using chromatography columns demonstrated that HSA can be purified to 95 % purity in a single step. Circular dichroism (CD) spectroscopy revealed structural similarities in HSA purified through affinity chromatography and fractionation using the Cohen method. Furthermore, the study of aspirin binding to HSA demonstrated that proteins purified via affinity chromatography and those fractionated by the Cohen method exhibited identical drug-binding affinities. The results of this study may have important implications for the clinical purification of human serum albumin.
Collapse
Affiliation(s)
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Wang X, Guo R, Huang M, Li Z, Lai Z, Yang R, Li L, Gao S, Yu C. Fibrinogen-to-Albumin Ratio and Glucose Metabolic States in Patients With Coronary Heart Disease. Angiology 2025; 76:271-280. [PMID: 37939004 DOI: 10.1177/00033197231206235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
This study investigated the relationship between fibrinogen-to-albumin ratio (FAR) and glucose metabolic state in patients with coronary heart disease (CHD). A total of 52,062 patients were enrolled in this study. Patients were classified according to FAR tertiles (T1: FAR < 0.0073; T2: 0.0073 ≤ FAR ≤ 0.0886; T3: FAR ≥ 0.0887). Patients were also classified into the normal glucose regulation (NGR) and elevated blood glucose (EBG) groups. The relationship between FAR and EBG was analyzed using logistic regression, and the association was evaluated according to sex and age. Among the participants, 32,471 (62.4%) had EBG, which was positively associated with FAR (odds ratio [OR], 1.19; 95% confidence interval [CI] 1.15-1.23). The OR of the FAR for EBG in males was higher than that in females (1.25; 95% CI 1.18-1.33 vs 1.15; 95% CI 1.10-1.20). Moreover, the OR of FAR for EBG was greater in patients aged 60 or younger (OR: 1.25; 95% CI 1.18-1.33) than in the elderly patients (over 60 years of age) (OR: 1.15; 95% CI 1.10-1.20). The results indicated a significant relationship between FAR and EBG and this association was higher in males and middle-aged patients.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiying Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengnan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhu Li
- Zhejiang Chinese Medical University, Zhejiang, China
| | - Ziqin Lai
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Pan B, He Q, Yu X, De Choch D, Lam KS, Hammock BD, Sun G. Versatility and stability of melamine foam-based biosensors (f-ELISA) using antibodies, nanobodies, and peptides as sensing probes. Talanta 2024; 279:126634. [PMID: 39121553 DOI: 10.1016/j.talanta.2024.126634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Macroporous three-dimensional (3D) framework structured melamine foam-based Enzyme-Linked Immunosorbent Assay (f-ELISA) biosensors were developed for rapid, reliable, sensitive, and on-site detection of trace amount of biomolecules and chemicals. Various ligands can be chemically immobilized onto the melamine foam, which brings in the possibility of working with antibodies, nanobodies, and peptides, respectively, as affinity probes for f-ELISA biosensors with improved stability. Different chemical reagents can be used to modify the foam materials, resulting in varied reactivities with antibodies, nanobodies, and peptides. As a result, the f-ELISA sensors produced from these modified foams exhibit varying levels of sensitivity and performance. This study demonstrated that the chemical reagents used for immobilizing antibodies, nanobodies, and peptides could affect the sensitivities of the f-ELISA sensors, and their storage stabilities under different temperatures varied depending on the sensing probes used, with f-ELISA sensors employing nanobodies as probes exhibiting the highest stability. This study not only showcases the versatility of the f-ELISA system but also opens new avenues for developing cost-effective, portable, and user-friendly diagnostic tools with optimized sensitivity and stability.
Collapse
Affiliation(s)
- Bofeng Pan
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Qiyi He
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Xingjian Yu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Dylan De Choch
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Gang Sun
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Gunwant V, Gahtori P, Varanasi SR, Pandey R. Protein-Mediated Changes in Membrane Fluidity and Ordering: Insights into the Molecular Mechanism and Implications for Cellular Function. J Phys Chem Lett 2024; 15:4408-4415. [PMID: 38625684 DOI: 10.1021/acs.jpclett.3c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.
Collapse
Affiliation(s)
- Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Srinivasa Rao Varanasi
- Department of Physics, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
6
|
Yu X, Pan B, Zhao C, Shorty D, Solano LN, Sun G, Liu R, Lam KS. Discovery of Peptidic Ligands against the SARS-CoV-2 Spike Protein and Their Use in the Development of a Highly Sensitive Personal Use Colorimetric COVID-19 Biosensor. ACS Sens 2023; 8:2159-2168. [PMID: 37253267 PMCID: PMC10255569 DOI: 10.1021/acssensors.2c02386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In addition to efficacious vaccines and antiviral therapeutics, reliable and flexible in-home personal use diagnostics for the detection of viral antigens are needed for effective control of the COVID-19 pandemic. Despite the approval of several PCR-based and affinity-based in-home COVID-19 testing kits, many of them suffer from problems such as a high false-negative rate, long waiting time, and short storage period. Using the enabling one-bead-one-compound (OBOC) combinatorial technology, several peptidic ligands with a nanomolar binding affinity toward the SARS-CoV-2 spike protein (S-protein) were successfully discovered. Taking advantage of the high surface area of porous nanofibers, immobilization of these ligands on nanofibrous membranes allows the development of personal use sensors that can achieve low nanomolar sensitivity in the detection of the S-protein in saliva. This simple biosensor employing naked-eye reading exhibits detection sensitivity comparable to some of the current FDA-approved home detection kits. Furthermore, the ligand used in the biosensor was found to detect the S-protein derived from both the original strain and the Delta variant. The workflow reported here may enable us to rapidly respond to the development of home-based biosensors against future viral outbreaks.
Collapse
Affiliation(s)
- Xingjian Yu
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
- Department
of Chemistry, University of California,
Sacramento, Sacramento, California 95616, United States
| | - Bofeng Pan
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Cunyi Zhao
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Diedra Shorty
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
- Department
of Chemistry, University of California,
Sacramento, Sacramento, California 95616, United States
| | - Lucas N. Solano
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| | - Gang Sun
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Ruiwu Liu
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| | - Kit S. Lam
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| |
Collapse
|