1
|
Howarth MR. Click biology highlights the opportunities from reliable biological reactions. Nat Chem Biol 2025; 21:991-1005. [PMID: 40537536 DOI: 10.1038/s41589-025-01944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/15/2025] [Indexed: 06/29/2025]
Abstract
Click chemistry is a powerful concept that refers to a set of covalent bond-forming reactions with highly favorable properties. In this Perspective, I outline the analogous concept of click biology as a set of reactions derived from the regular building blocks of living cells, rapidly forming covalent bonds to specific partners under cell-friendly conditions. Click biology using protein components employs canonical amino acids and may react close to the diffusion limit, with selectivity in living cells amid thousands of components generated from the same building blocks. I discuss how the criteria for click chemistry can be applied or modified to fit the extra constraints of click biology and achieve favorable characteristics for biological research. Existing reactions that may be described as click biology include split intein reconstitution, spontaneous isopeptide bond formation by SpyTag and SpyCatcher and suicide enzyme reaction with small-molecule ligands (HaloTag and SNAP-tag). I also describe how click biology has created new possibilities in fields including molecular imaging, mechanobiology, vaccines and engineering cellular intelligence.
Collapse
Affiliation(s)
- Mark R Howarth
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
- Engineering Biology Interdisciplinary Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025; 99:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Gamelas SRD, Shmuel S, Simó C, Vanover A, Tomé JPC, Tomé AC, Lourenço LMO, Pereira PMR. Positron Emission Tomography and Optical Imaging to Monitor Bioorthogonal Diels-Alder Click Chemistry of Trastuzumab with a Porphyrin. Bioconjug Chem 2025; 36:1013-1020. [PMID: 40353799 DOI: 10.1021/acs.bioconjchem.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Click chemistry to allow in vivo conjugation of a fluorophore porphyrin (Por)-tetrazine (Tz) with the human epidermal growth factor receptor 2 (HER2)-targeting trastuzumab conjugated with trans-cyclooctene (TCO) is described here. In vitro experiments confirmed successful click reactions between Por-Tz and trastuzumab-TCO and validated preserved trastuzumab immunoreactivity (no significant change in HER2 binding, p > 0.05). Positron emission tomography (PET) of [89Zr]Zr-DFO-trastuzumab-TCO demonstrated 17.1 ± 2.9% injected dose per gram of tumor at 48 h postinjection. Optical imaging showed an ∼10-fold increase in the click group for Por-Tz when compared with Por-Tz alone. This preclinical data demonstrate a pretargeted approach for dual PET and optical imaging of HER2-expressing tumors.
Collapse
Affiliation(s)
- Sara R D Gamelas
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Cristina Simó
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alex Vanover
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - João P C Tomé
- CQE, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Patrícia M R Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Oroujeni M, Westerlund K, Papalanis E, van Deventer A, Liu Y, Clinton J, Wang Z, Zelepukin I, Orlova A, Tolmachev V, Eriksson Karlström A. Designed Ankyrin Repeat Protein-Mediated Peptide Nucleic Acid-Based Pretargeting: A Proof-of-Principle Study. J Nucl Med 2025:jnumed.125.269533. [PMID: 40374553 DOI: 10.2967/jnumed.125.269533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/21/2025] [Indexed: 05/17/2025] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are a class of engineered scaffold proteins (ESPs) with a molecular weight of approximately 15 kDa and a picomolar affinity for tumor antigen targets. Proof-of-concept studies have demonstrated the potential of DARPin radioimmunodiagnostics in humans. However, a high accumulation of activity in the kidneys limits their use in conventional radionuclide therapy. A peptide nucleic acid (PNA)-based pretargeted approach was successfully applied to Affibody molecules, another class of ESP. We hypothesized that this method could also enable the controlled conversion of DARPins into pretargeting probes. In this proof-of-principle study, we tested this hypothesis using the human epidermal growth factor receptor type 2 (HER2)-targeting DARPin G3 as a model. Methods: We performed site-specific coupling of PNA to the DARPin using sortase A-mediated ligation. The DARPin G3 was modified at the C-terminus with a sortase A recognition sequence. A GGG-modified hybridization probe (HP1) containing a 15-base PNA sequence was attached to G3 using sortase A, creating the primary agent G3-HP1. To evaluate cell binding specificity and biodistribution, G3-HP1 was labeled with 125I. The complementary PNA-based secondary probe HP2 containing the DOTA chelator was labeled with 177Lu. In vitro studies were performed in HER2-expressing cell lines. Biodistribution and in vivo targeting and pretargeting specificity were evaluated in mice with HER2-positive SKOV-3 and HER2-negative Ramos xenografts. In vivo pretargeting of [177Lu]Lu-HP2 using G3-HP1 was head-to-head compared with Affibody molecule-mediated pretargeting using ZHER2:342-HP1 and with direct targeting using [177Lu]Lu-DOTA-G3. Results: [125I]I-G3-HP1 demonstrated specific binding to HER2-expressing cells with picomolar affinity. [177Lu]Lu-HP2 showed HER2-specific and PNA-dependent binding to G3-HP1-pretreated cells with subnanomolar affinity. Biodistribution studies confirmed HER2-specific tumor uptake of [125I]I-G3-HP1. The uptake of [177Lu]Lu-HP2 in xenografts was HER2-dependent and PNA-mediated in the case of G3-HP1 preinjection. The pretargeting approach increased the tumor uptake 8-fold compared with direct targeting using [177Lu]Lu-DOTA-G3. Pretargeting substantially decreased the uptake in the kidneys (∼9-fold), liver (∼370-fold), and spleen (6.5-fold). The biodistribution and the tumor uptake of [177Lu]Lu-HP2 were strikingly similar in the cases of Affibody- and DARPin-based pretargeting. Conclusion: Sortase A-mediated coupling enables the development of a PNA-based pretargeting system for DARPin G3, expanding the application of this approach to another class of ESPs.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Westerlund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; and
| | - Eleftherios Papalanis
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexander van Deventer
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; and
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jacob Clinton
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; and
| | - Zhengyue Wang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ivan Zelepukin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden;
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; and
| |
Collapse
|
5
|
Yadav MS, Pandey VK, Jaiswal MK, Singh SK, Sharma A, Singh M, Tiwari VK. Late-Stage Functionalization Strategies of 1,2,3-Triazoles: A Post-Click Approach in Organic Synthesis. J Org Chem 2025; 90:5731-5762. [PMID: 40251004 DOI: 10.1021/acs.joc.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The 1,2,3-triazole scaffolds are an important class of biologically privileged heterocyclic compounds with several key applications in chemistry, biology, medicine, agriculture, and material science. The "postclick" functionalization of 1,2,3-triazoles may emerge as a promising tactic for the construction of molecular architectures of therapeutics and is considered to be a growing area of investigation. This interest extends beyond the regioselective Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) method that involves the trapping of Cu(I)-triazole with suitable precursors. In this Perspective, we highlight the growing impact of postclick strategies in organic synthesis required for the late-stage functionalization of 1,2,3-triazoles with a hope that this emerging concept may provide ample opportunities in modern organic synthesis of notable applications in medicinal chemistry, biology, and materials science.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anindra Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Department of Chemistry, A.P.S.M. College, Barauni, Begusarai, Bihar 851112, India
| | - Mayank Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
6
|
Hvass L, Müller M, Staudt M, García-Vázquez R, Gustavsson TK, Shalgunov V, Jørgensen JT, Battisti UM, Herth MM, Kjaer A. Head-to-Head Comparison of the in Vivo Performance of Highly Reactive and Polar 18F-Labeled Tetrazines. Mol Pharm 2025; 22:1911-1919. [PMID: 40081392 PMCID: PMC11979891 DOI: 10.1021/acs.molpharmaceut.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
Pretargeted imaging harnessing tetrazine ligation has gained increased interest over recent years. Targeting vectors with slow pharmacokinetics may be visualized using short-lived radionuclides, such as fluorine-18 (18F) for positron emission tomography (PET), and result in improved target-to-background ratios compared to conventionally radiolabeled slowly accumulating vectors. We recently developed different radiochemical protocols enabling the direct radiofluorination of various tetrazine scaffolds, resulting in the development of various highly reactive and polar 18F-labeled tetrazines as lead candidates for pretargeted imaging. Here, we performed a direct head-to-head-comparison of our lead candidates to evaluate the most promising for future clinical translation. For that, all 18F-labeled tetrazine-scaffolds were synthesized in similar molar activity for improved comparability of their in vivo pretargeting performance. Intriguingly, previously reported dicarboxylic acid lead candidates with a net charge of -1 were outperformed by respective monocarboxylic acid derivatives bearing a net charge of 0, warranting further evaluation of such scaffolds prior to their clinical translation.
Collapse
Affiliation(s)
- Lars Hvass
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias K. Gustavsson
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Sayed MT, Mady MF. A review of click chemistry in the synthesis of organophosphorus triazoles and their biological activities. Eur J Med Chem 2025; 286:117270. [PMID: 39827489 DOI: 10.1016/j.ejmech.2025.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Organophosphorus compounds, characterized by the incorporation of phosphorus into organic molecules, play a critical role in various fields such as medicine, agriculture, and industry. Their unique electronic properties and versatility make them essential in developing therapeutic agents, pesticides, and materials. One prominent class of organophosphorus compounds is organophosphorus heterocycles, which combine the benefits of both phosphorus and cyclic structures. Triazoles, a class of nitrogen-containing heterocyclic compounds, are particularly notable for their broad biological activities, including anticancer, antiviral, antibacterial, and antioxidant effects. Traditional methods for synthesizing triazoles often encounter challenges such as low yields and non-selective products, whereas click chemistry provides a more efficient and reliable alternative. The copper-catalyzed azide-alkyne [3 + 2] cycloaddition, a cornerstone of click chemistry, allows for the rapid and selective formation of triazoles under mild conditions. When functionalized with organophosphorus groups, triazoles not only retain but often enhance their biological activities, improving their potency, selectivity, and stability. This review covers the synthesis of organophosphorus-functionalized triazoles via click chemistry and explores their molecular structure, including the coordination chemistry of these compounds. The behavior and interactions of these organophosphorus derivatives with various metal ions are also addressed, as these interactions significantly influence their chemical reactivity, stability, and bioactivity.
Collapse
Affiliation(s)
- Mariam T Sayed
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Mohamed F Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
8
|
Lacerda S, de Kruijff RM, Djanashvili K. The Advancement of Targeted Alpha Therapy and the Role of Click Chemistry Therein. Molecules 2025; 30:1296. [PMID: 40142070 PMCID: PMC11944744 DOI: 10.3390/molecules30061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Recent years have seen a swift rise in the use of α-emitting radionuclides such as 225Ac and 223Ra as various radiopharmaceuticals to treat (micro)metastasized tumors. They have shown remarkable effectiveness in clinical practice owing to the highly cytotoxic α-particles that are emitted, which have a very short range in tissue, causing mainly double-stranded DNA breaks. However, it is essential that both chelation and targeting strategies are optimized for their successful translation to clinical application, as α-emitting radionuclides have distinctly different features compared to β--emitters, including their much larger atomic radius. Furthermore, upon α-decay, any daughter nuclide irrevocably breaks free from the targeting molecule, known as the recoil effect, dictating the need for faster targeting to prevent healthy tissue toxicity. In this review we provide a brief overview of the current status of targeted α-therapy and highlight innovations in α-emitter-based chelator design, focusing on the role of click chemistry to allow for fast complexation to biomolecules at mild labeling conditions. Finally, an outlook is provided on different targeting strategies and the role that pre-targeting can play in targeted alpha therapy.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, France;
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
9
|
Oprea I, Smith TK. Click Chemistry Methodology: The Novel Paintbrush of Drug Design. ACS Chem Biol 2025; 20:19-32. [PMID: 39730316 PMCID: PMC11744672 DOI: 10.1021/acschembio.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Click chemistry is an immensely powerful technique for the synthesis of reliable and efficient covalent linkages. When undertaken in living cells, the concept is thereby coined bioorthogonal chemistry. Used in conjunction with the photo-cross-linking methodology, it serves as a sound strategy in the exploration of biological processes and beyond. Its broad scope has led to widespread use in many disciplines; however, this Review focuses on the use of click and bioorthogonal chemistry within medicinal chemistry, specifically with regards to drug development applications, namely, the use of DNA-encoded libraries as a novel technique for lead compound discovery, as well as the synthesis of antisense oligonucleotides and protein-drug conjugates. This Review aims to provide a critical perspective and a future outlook of this methodology, such as potential widespread use in cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Ioana Oprea
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| | - Terry K. Smith
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| |
Collapse
|
10
|
Mack KN, Bauer D, Carter LM, Carrasco SE, Atmane MI, Viray TD, Brooks CL, Hollingsworth MA, Radhakrishnan P, Lewis JS. Pretargeted alpha therapy in MUC16-positive high-grade serous ovarian cancer. Nucl Med Biol 2025; 140-141:108976. [PMID: 39615062 DOI: 10.1016/j.nucmedbio.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Peritoneal metastasis with micrometastatic cell clusters is a common feature of advanced ovarian cancer. Targeted alpha therapy (TAT) is an attractive approach for treating micrometastatic diseases as alpha particles release enormous amounts of energy within a short distance. A pretargeting approach - leveraging the inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctene (TCO) - can minimize off-target toxicity related to TAT, often associated with full-length antibodies. We hypothesized that a pretargeting strategy could effectively treat high-grade serous (HGS) ovarian tumors while minimizing toxicity. METHODS We utilized the humanized antibody, AR9.6, labeled with actinium-225 (225Ac). AR9.6 targets fully glycosylated and hypoglycosylated isoforms of MUC16. For biodistribution and radioimmunotherapy studies, AR9.6-TCO was injected into OVCAR3-bearing mice 72 h before administering [225Ac]Ac-mcp-PEG8-Tz, e.g. using a 1,2,4,5-tetrazine conjugated to the macropa chelator via a polyethylene glycol (PEG) linker. RESULTS Biodistribution data revealed that the pretargeting approach achieved substantial tumor uptake. Cerenkov luminescence imaging confirmed successful in vivo pretargeting during TAT studies. Compared to the control groups, TAT with AR9.6-TCO and [225Ac]Ac-mcp-PEG8-Tz significantly suppressed tumor growth and improved overall survival in OVCAR3 tumor-bearing mice. Renal and ovarian pathology compatible with toxicity was observed in mice in addition to transient hematologic toxicity. CONCLUSION We confirmed that pretargeting with AR9.6-TCO and [225Ac]Ac-mcp-PEG8-Tz has durable antitumor effects in high MUC16-expressing tumors. These findings demonstrate great potential for using pretargeting in combination with TAT for the treatment of ovarian cancer. CLASSIFICATION Biological Sciences; Applied Biological Sciences.
Collapse
Affiliation(s)
- Kyeara N Mack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastian E Carrasco
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, NY, New York, USA
| | - Mohamed I Atmane
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, NY, New York, USA
| | - Tara D Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cory L Brooks
- Department of Chemistry and Biochemistry, California State University, Fresno, CA, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Rheinfrank T, Lebruška V, Stangl S, Vojtíčková M, Nguyen NT, Koller L, Šimeček J, Kubíček V, Kossatz S, Notni J. Three Is a Magic Number: Tailored Clickable Chelators Used to Determine Optimal RGD-Peptide Multiplicity in αvβ6-Integrin Targeted 177Lu-Labeled Cancer Theranostics. Bioconjug Chem 2024; 35:1970-1984. [PMID: 39608839 DOI: 10.1021/acs.bioconjchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
Collapse
Affiliation(s)
- Tim Rheinfrank
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Viktor Lebruška
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Stefan Stangl
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Lena Koller
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Jakub Šimeček
- TRIMT GmbH, Carl-Eschebach-Str. 7, 01454 Radeberg, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Johannes Notni
- TRIMT GmbH, Carl-Eschebach-Str. 7, 01454 Radeberg, Germany
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, D-81675 München, Germany
| |
Collapse
|
12
|
Allen KH, Frank C, Jiao R, Malo ME, Bello M, De Nardo L, Meléndez-Alafort L, Dadachova E. In Vitro and In Vivo Comparison of Random versus Site-Specific Conjugation of Bifunctional Chelating Agents to the CD33-Binding Antibody for Use in Alpha- and Beta-Radioimmunotherapy. ACS OMEGA 2024; 9:50000-50011. [PMID: 39713652 PMCID: PMC11656351 DOI: 10.1021/acsomega.4c09450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Radiometal chelator conjugation is a cornerstone of radioimmunotherapy (RIT). Continued interest in selective placement of chelators remains an active topic of discussion in the field. With several simple site-specific methods being recently reported, it was of interest to investigate the benefits and potential drawbacks of the site-specific method with a full comparison to a more typical random conjugation method that is currently utilized in clinical applications. In this study, the conjugation methods were evaluated side by side to determine the utility of both methods using commercially available random and site-specific conjugation reagents by performing antigen binding; radiolabeling with 64Cu, 177Lu, and 225Ac radioisotopes; antibody-conjugate stability, cytotoxicity, in vivo distribution, pharmacokinetics analyses, and dosimetry to gather a whole data set for preclinical investigation. Evaluation revealed that both methods performed similarly during most experiments with the site-specific method, resulting in higher binding capacity of the antibody conjugate via flow cytometry. Radiolabeling was not significantly different between two methods, while stability showed that the site-specifically conjugated antibody was somewhat more stable at 37 °C in human serum over 1 week. In vitro experiments demonstrated less cell killing with the random conjugation method, while in vivo experiments showed no statistical differences in tumor uptake between conjugation methods. Dosimetry calculations were performed using the acquired PET/CT data and showed that apart from the liver, there was no significant difference in radiation doses delivered by either antibody conjugate. These results demonstrate that both methods are viable for future work, while the site-specific method offers several potential advantages and, in some cases, improved efficacy.
Collapse
Affiliation(s)
- Kevin
J. H. Allen
- College
of Pharmacy and Nutrition, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Connor Frank
- College
of Pharmacy and Nutrition, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Rubin Jiao
- College
of Pharmacy and Nutrition, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Mackenzie E. Malo
- College
of Pharmacy and Nutrition, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Michele Bello
- Department
of Physics and Astronomy, University of
Padua, Via Marzolo 8, Padua I-35131, Italy
| | - Laura De Nardo
- Department
of Physics and Astronomy, University of
Padua, Via Marzolo 8, Padua I-35131, Italy
| | - Laura Meléndez-Alafort
- Immunology
and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, Padua 35128, Italy
| | - Ekaterina Dadachova
- College
of Pharmacy and Nutrition, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
13
|
Li H, Ai Y, Wu Y, Fan R, Tian Y, Chen S, Wan W, Wu C. Development of a Graphene Oxide-Based Aptamer Nanoarray for Improved Neutralization and Protection Effects Against Ricin. Pharmaceutics 2024; 16:1455. [PMID: 39598578 PMCID: PMC11597295 DOI: 10.3390/pharmaceutics16111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ricin's high toxicity and potential as a bioweapon underscore the need for effective antidotes. Monoclonal antibodies, though effective, are limited by complex production. This study aimed to develop a graphene oxide-based aptamer nanoarray (ARMAN) for improved neutralization and protection against ricin. Methods: High-affinity aptamers targeting ricin's RTA and RTB subunits were selected using SELEX technology and conjugated to graphene oxide (GO) via click chemistry. ARMAN's characteristics, including morphology, stability, and biosecurity, were assessed. Its performance was evaluated in terms of affinity for ricin, neutralization capacity, and therapeutic effects in cellular assays and a mouse model of ricin poisoning. Results: ARMAN exhibited a uniform morphology with an average particle size of 217 nm and demonstrated significantly enhanced affinity for ricin compared to free aptamers. ARMAN showed rapid and effective neutralization ability, significantly increasing cell viability in BEAS-2B, GES-1, and HL7702 cell lines exposed to ricin. In vivo, ARMAN treatment led to a notable prolongation of survival in ricin-poisoned mice, highlighting its potential for both pre- and post-exposure treatment. These findings indicate that ARMAN not only neutralizes ricin effectively but also provides a therapeutic window for treatment. Conclusions: ARMAN's superior binding affinity, serum stability, biocompatibility, and broad therapeutic efficacy make it a promising new antidote against ricin poisoning. This study's findings represent significant progress in the development of rapid-response antidotes, with ARMAN offering a potential solution for both military and civilian emergency response scenarios.
Collapse
Affiliation(s)
- Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanwen Ai
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanjin Wu
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Ruyu Fan
- Clinical Research Unit, The First Affiliated Hospital of Navy Medical University (Changhai Hospital), 168 Changhai Road, Shanghai 200433, China
| | - Yuan Tian
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shuangqun Chen
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wei Wan
- Department of Orthopedic Oncology, Spinal Tumor Center, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Cong Wu
- Clinical Research Unit, The First Affiliated Hospital of Navy Medical University (Changhai Hospital), 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
14
|
Huang W, Cao M, Wu Y, Zhang Y, An S, Pan X, Zhou X, Shao H, Guan Y, Huang G, Gelardi F, Chiti A, Xie F, Liu J, Wei W. Immuno-PET/CT Imaging of Trop2 with [ 18F]AlF-RESCA-T4 Differentiates Lung Cancer from Inflammation. J Nucl Med 2024:jnumed.124.268751. [PMID: 39542697 DOI: 10.2967/jnumed.124.268751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Immuno-PET/CT imaging, a branch of molecular imaging, can noninvasively and specifically visualize biomarker expression across the body. Trophoblast cell surface antigen 2 (Trop2) is a pan-cancer biomarker and plays a crucial role in tumorigenesis through multiple signaling pathways. The study aims to develop and translate novel Trop2 single-domain antibody (sdAb) tracers for clinical use. Methods: Two sdAbs (i.e., His-tagged T4 and His-tag-free RT4) are recombinantly expressed in Chinese hamster ovary cells. The purities and binding kinetics are determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, high-performance liquid chromatography, and surface plasmon resonance assays. The AlF restrained complexing agent (RESCA) method is applied to develop 18F-labeled sdAb tracers ([18F]AlF-RESCA-T4 and [18F]AlF-RESCA-RT4), followed by thorough preclinical imaging and blocking studies on tumor-bearing mice and a pilot clinical trial evaluating the clinical imaging safety and feasibility of [18F]AlF-RESCA-T4 immuno-PET/CT. Results: [18F]AlF-RESCA-T4 and [18F]AlF-RESCA-RT4 possess high radiochemical purities. Preclinical imaging in the T3M-4 tumor model revealed prominent uptake (percentage injected dose/g) of [18F]AlF-RESCA-T4 (11.13 ± 1.53, n = 4) and [18F]AlF-RESCA-RT4 (8.83 ± 1.22, n = 4), which were significantly reduced by coinjection of unlabeled T4 and RT4 in blocking studies. The His-tag removal strategy further optimized the probe's in vivo pharmacokinetics and reduced renal radioactivity accumulation without significantly decreasing tumor uptake. In a pilot clinical trial, [18F]AlF-RESCA-T4 immuno-PET/CT showed promising potency in annotating Trop2 expression and differentiating tumors from inflammatory diseases such as tuberculosis. Conclusion: [18F]AlF-RESCA-T4 and [18F]AlF-RESCA-RT4 can specifically annotate Trop2 expression. Clinical [18F]AlF-RESCA-T4 immuno-PET/CT imaging can screen patients for Trop2-targeted therapies and differentiate lung inflammation from cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbing Pan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyuan Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongda Shao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fabrizia Gelardi
- Università Vita-Salute San Raffaele, Milan, Italy; and
- Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy
| | - Arturo Chiti
- Università Vita-Salute San Raffaele, Milan, Italy; and
- Nuclear Medicine Department, IRCCS San Raffaele, Milano, Italy
| | - Fang Xie
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China;
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China;
| |
Collapse
|
15
|
David T, Šedinová M, Myšková A, Kuneš J, Maletínská L, Pohl R, Dračínský M, Mertlíková-Kaiserová H, Čížek K, Klepetářová B, Litecká M, Kaňa A, Sýkora D, Jaroš A, Straka M, Polasek M. Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis. Nat Commun 2024; 15:9836. [PMID: 39537622 PMCID: PMC11561307 DOI: 10.1038/s41467-024-53867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Coordination compounds of lanthanides are indispensable in biomedical applications as MRI contrast agents and radiotherapeutics. However, since the introduction of the chelator DOTA four decades ago, there has been only limited progress on improving their thermodynamic stability and kinetic inertness, which are essential for safe in vivo use. Here, we present ClickZip, an innovative synthetic strategy employing a coordination-templated formation of a 1,5-triazole bridge that improves kinetic inertness up to a million-fold relative to DOTA, expanding utility of lanthanide chelates beyond traditional uses. Acting as unique mass tags, the ClickZip chelates can be released from (biological) samples by acidic hydrolysis, chromatographically distinguished from interfering lanthanide species, and sensitively detected by mass spectrometry. Lanthanides enclosed in ClickZip chelates are chemically almost indistinguishable, providing a more versatile alternative to chemically identical isotopic labels for multiplexed analysis. The bioanalytical potential is demonstrated on tagged cell-penetrating peptides in vitro, and anti-obesity prolactin-releasing peptides in vivo.
Collapse
Affiliation(s)
- Tomáš David
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šedinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Karel Čížek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Litecká
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Řež, Czech Republic
| | - Antonín Kaňa
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David Sýkora
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Adam Jaroš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Polasek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Zhou X, Shi B, Huang G, Liu J, Wei W. Trends in cancer imaging. Trends Cancer 2024; 10:1023-1037. [PMID: 39232974 DOI: 10.1016/j.trecan.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Molecular imaging of cancer is a collaborative endeavor, uniting scientists and physicians from diverse fields. Such collaboration is actively developing and translating cutting-edge molecular imaging approaches to enhance the diagnostic landscape of human malignancies. The advent of positron emission tomography (PET) and PET imaging tracers has realized non-invasive target annotation and tumor characterization at the molecular level. In surgical procedures, novel imaging techniques, such as fluorescence or Cherenkov luminescence, help identify tumors and enhance surgical precision. Simultaneously, progress in imaging equipment, innovative algorithms, and artificial intelligence has opened avenues for next-generation cancer screening and imaging, augmenting the efficiency and accuracy of cancer diagnosis. In this review, we provide a panorama of molecular cancer imaging and ongoing developments in the field.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Binyu Shi
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
17
|
Le Saux L, Haddad F, Gestin JF, Eychenne R, Guérard F. Sydnone-based prosthetic groups for radioiodination. Bioorg Med Chem 2024; 113:117904. [PMID: 39265508 DOI: 10.1016/j.bmc.2024.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
The potential of Strained-Promoted Sydnone-Alkyne Cycloaddition (SPSAC) for radioiodination was evaluated with model cyclooctyne-conjugated peptides. Starting with a series of sydnones with varying N3 and C4 substitution, a preliminary kinetic study with non-radioactive iodinated compounds highlighted the superiority of an arylsydnone substituted by a chlorine atom in C4 position. Interestingly, reaction rate up to 11 times higher than using an azide was achieved with the best system. Access to 125I-labelled sydnones was granted with high efficiency from arylboronic acid precursors by copper catalyzed nucleophilic substitution. Application of SPSAC on the model peptide in radiotracer conditions showed the same trend than in non-radioactive kinetic study and complete reactions could be achieved within less than an hour for the best systems. These results are favorable for use in the production of radiopharmaceuticals with heavy halogens and increase the diversity of available bioorthogonal reaction for nuclear imaging and therapy.
Collapse
Affiliation(s)
- Ludovic Le Saux
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA Nantes, France; Groupement d'Intérêt Public ARRONAX, 1 rue Aronnax, F-44817 Saint-Herblain, France
| | - Ferid Haddad
- Groupement d'Intérêt Public ARRONAX, 1 rue Aronnax, F-44817 Saint-Herblain, France; Laboratoire Subatech, IN2P3-CNRS, IMT Atlantique, Nantes Université, 4 rue Alfred Kastler, F-44307 Nantes, France
| | | | - Romain Eychenne
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA Nantes, France; Groupement d'Intérêt Public ARRONAX, 1 rue Aronnax, F-44817 Saint-Herblain, France.
| | - François Guérard
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA Nantes, France.
| |
Collapse
|
18
|
Šlachtová V, Bellová S, Vrabel M. Synthesis of C 3-Substituted N1- tert-Butyl 1,2,4-Triazinium Salts via the Liebeskind-Srogl Reaction for Fluorogenic Labeling of Live Cells. J Org Chem 2024; 89:14634-14640. [PMID: 38224304 PMCID: PMC11494656 DOI: 10.1021/acs.joc.3c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
We recently described the development and application of a new bioorthogonal conjugation, the triazinium ligation. To explore the wider application of this reaction, in this work, we introduce a general method for synthesizing C3-substituted triazinium salts based on the Liebeskind-Srogl cross-coupling reaction and catalytic thioether reduction. These methods enabled the synthesis of triazinium derivatives for investigating the effect of different substituents on the ligation kinetics and stability of the compounds under biologically relevant conditions. Finally, we demonstrate that the combination of a coumarin fluorophore attached to position C3 with a C5-(4-methoxyphenyl) substituent yields a fluorogenic triazinium probe suitable for no-wash, live-cell labeling. The developed methodology represents a promising synthetic approach to the late-stage modification of triazinium salts, potentially widening their applications in bioorthogonal reactions.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| |
Collapse
|
19
|
Wei Z, Li B, Wen X, Jakobsson V, Liu P, Chen X, Zhang J. Engineered Antibodies as Cancer Radiotheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402361. [PMID: 38874523 PMCID: PMC11321656 DOI: 10.1002/advs.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Radiotheranostics is a rapidly growing approach in personalized medicine, merging diagnostic imaging and targeted radiotherapy to allow for the precise detection and treatment of diseases, notably cancer. Radiolabeled antibodies have become indispensable tools in the field of cancer theranostics due to their high specificity and affinity for cancer-associated antigens, which allows for accurate targeting with minimal impact on surrounding healthy tissues, enhancing therapeutic efficacy while reducing side effects, immune-modulating ability, and versatility and flexibility in engineering and conjugation. However, there are inherent limitations in using antibodies as a platform for radiopharmaceuticals due to their natural activities within the immune system, large size preventing effective tumor penetration, and relatively long half-life with concerns for prolonged radioactivity exposure. Antibody engineering can solve these challenges while preserving the many advantages of the immunoglobulin framework. In this review, the goal is to give a general overview of antibody engineering and design for tumor radiotheranostics. Particularly, the four ways that antibody engineering is applied to enhance radioimmunoconjugates: pharmacokinetics optimization, site-specific bioconjugation, modulation of Fc interactions, and bispecific construct creation are discussed. The radionuclide choices for designed antibody radionuclide conjugates and conjugation techniques and future directions for antibody radionuclide conjugate innovation and advancement are also discussed.
Collapse
Affiliation(s)
- Zhenni Wei
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xuejun Wen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Peifei Liu
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Departments of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnologyand Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| |
Collapse
|
20
|
Hamzeheipour S, Rezaei A, Behniafar H. Novel amphiphilic (AB)3‐type star block polymer: Synthesis and micellization study. J Appl Polym Sci 2024; 141. [DOI: 10.1002/app.55565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractAn amphiphilic three‐armed star polymer was synthesized through the polar cycloaddition reaction of a polyethylene glycol‐based macro‐triazide with an Yne‐terminated polycaprolactone in a molar ratio of 1:3 (click chemistry). Thus, each arm is itself a di‐block copolymer branched from the core, which is a 1,3,5‐triazine ring. The attachment of the pre‐synthesized hydrophobic segments to the hydrophilic segments in each arm leads to the creation of a 1,2,3‐triazole ring in the structure. Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (H‐NMR) spectroscopies were used to verify the structures. The micellization process of the prepared amphiphilic polymer was investigated in aqueous medium. For this purpose, the critical micelle concentration (CMC) was specified by the fluorometric method. Using the transmission electron microscopy (TEM) technique, it was observed that spherical self‐assemblies with a mean diameter of <100 nm are formed from the aggregation of the amphiphilic macromolecules. In addition, the hydrodynamic diameter (H) of the polymeric micelles and their size distribution were examined by dynamic light scattering (DLS) technique.
Collapse
Affiliation(s)
| | - Abbas Rezaei
- School of Chemistry Damghan University Damghan Iran
| | | |
Collapse
|
21
|
Maujean T, Ramanoudjame SM, Riché S, Le Guen C, Boisson F, Muller S, Bonnet D, Gulea M, Marchand P. Hetero-Diels-Alder and CuAAC Click Reactions for Fluorine-18 Labeling of Peptides: Automation and Comparative Study of the Two Methods. Molecules 2024; 29:3198. [PMID: 38999148 PMCID: PMC11243578 DOI: 10.3390/molecules29133198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.
Collapse
Affiliation(s)
- Timothé Maujean
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Sridévi M. Ramanoudjame
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Stéphanie Riché
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Clothilde Le Guen
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
- Inovarion, F-75005 Paris, France
| | - Frédéric Boisson
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sylviane Muller
- Université de Strasbourg, CNRS, Biotechnologie et Signalisation Cellulaire UMR 7242, F-67000 Strasbourg, France
| | - Dominique Bonnet
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Mihaela Gulea
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
22
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
23
|
Timperanza C, Jensen H, Hansson E, Bäck T, Lindegren S, Aneheim E. In vitro and in vivo evaluation of a tetrazine-conjugated poly-L-lysine effector molecule labeled with astatine-211. EJNMMI Radiopharm Chem 2024; 9:43. [PMID: 38775973 PMCID: PMC11111624 DOI: 10.1186/s41181-024-00273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND A significant challenge in cancer therapy lies in eradicating hidden disseminated tumor cells. Within Nuclear Medicine, Targeted Alpha Therapy is a promising approach for cancer treatment tackling disseminated cancer. As tumor size decreases, alpha-particles gain prominence due to their high Linear Energy Transfer (LET) and short path length. Among alpha-particle emitters, 211At stands out with its 7.2 hour half-life and 100% alpha emission decay. However, optimizing the pharmacokinetics of radiopharmaceuticals with short lived radionuclides such as 211At is pivotal, and in this regard, pretargeting is a valuable tool. This method involves priming the tumor with a modified monoclonal antibody capable of binding both the tumor antigen and the radiolabeled carrier, termed the "effector molecule. This smaller, faster-clearing molecule improves efficacy. Utilizing the Diels Alder click reaction between Tetrazine (Tz) and Trans-cyclooctene (TCO), the Tz-substituted effector molecule combines seamlessly with the TCO-modified antibody. This study aims to evaluate the in vivo biodistribution of two Poly-L-Lysine-based effector molecule sizes (10 and 21 kDa), labelled with 211At, and the in vitro binding of the most favorable polymer size, in order to optimize the pretargeted radioimmunotherapy with 211At. RESULTS In vivo results favor the smaller polymer's biodistribution pattern over the larger one, which accumulates in organs like the liver and spleen. This is especially evident when comparing the biodistribution of the smaller polymer to a directly labelled monoclonal antibody. The smaller variant also shows rapid and efficient binding to SKOV-3 cells preloaded with TCO-modified Trastuzumab in vitro, emphasizing its potential. Both polymer sizes showed equal or better in vivo stability of the astatine-carbon bond compared to a monoclonal antibody labelled with the same prosthetic group. CONCLUSIONS Overall, the small Poly-L-Lysine-based effector molecule (10 kDa) holds the most promise for future research, exhibiting significantly lower uptake in the kidneys and spleen compared to the larger effector (21 kDa) while maintaining an in vivo stability of the astatine-carbon bond comparable to or better than intact antibodies. A proof of concept in vitro cell study demonstrates rapid reaction between the small astatinated effector and a TCO-labelled antibody, indicating the potential of this novel Poly-L-Lysine-based pretargeting system for further investigation in an in vivo tumor model.
Collapse
Affiliation(s)
- Chiara Timperanza
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden.
| | - Holger Jensen
- Department of Clinical Physiology and Nuclear Medicine, Cyclotron and Radiochemistry unit, Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark
| | - Ellinor Hansson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
- Atley Solutions AB, Gothenburg, 413 27, Sweden
| | - Tom Bäck
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Sture Lindegren
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Emma Aneheim
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, 413 45, Sweden
| |
Collapse
|
24
|
Chapeau D, Beekman S, Handula M, Murce E, de Ridder C, Stuurman D, Seimbille Y. eTFC-01: a dual-labeled chelate-bridged tracer for SSTR2-positive tumors. EJNMMI Radiopharm Chem 2024; 9:44. [PMID: 38775990 PMCID: PMC11111636 DOI: 10.1186/s41181-024-00272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Integrating radioactive and optical imaging techniques can facilitate the prognosis and surgical guidance for cancer patients. Using a single dual-labeled tracer ensures consistency in both imaging modalities. However, developing such molecule is challenging due to the need to preserve the biochemical properties of the tracer while introducing bulky labeling moieties. In our study, we designed a trifunctional chelate that facilitates the coupling of the targeting vector and fluorescent dye at opposite sites to avoid undesired steric hindrance effects. The synthesis of the trifunctional chelate N3-Py-DOTAGA-(tBu)3 (7) involved a five-step synthetic route, followed by conjugation to the linear peptidyl-resin 8 through solid-phase synthesis. After deprotection and cyclization, the near-infrared fluorescent dye sulfo-Cy.5 was introduced using copper free click chemistry, resulting in eTFC-01. Subsequently, eTFC-01 was labeled with [111In]InCl3. In vitro assessments of eTFC-01 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex-vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. RESULTS eTFC-01 demonstrated a two-fold higher IC50 value for SSTR2 compared to the gold standard DOTA-TATE. Labeling of eTFC-01 with [111In]InCl3 gave a high radiochemical yield and purity. The uptake of [111In]In-eTFC-01 in U2OS.SSTR2 cells was two-fold lower than the uptake of [111In]In-DOTA-TATE, consistent with the binding affinity. Tumor uptake in H69-xenografted mice was lower for [111In]In-eTFC-01 at all-time points compared to [111In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [111In]In-eTFC-01 in highly vascularized tissues, such as lungs, skin, and heart. Fluorescence measurements in different organs correlated with the radioactive signal distribution. CONCLUSION The successful synthesis and coupling of the trifunctional chelate to the peptide and fluorescent dye support the potential of this synthetic approach to generate dual labeled tracers. While promising in vitro, the in vivo results obtained with [111In]In-eTFC-01 suggest the need for adjustments to enhance tracer distribution.
Collapse
Affiliation(s)
- Dylan Chapeau
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Savanne Beekman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maryana Handula
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erika Murce
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Corrina de Ridder
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Debra Stuurman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Yann Seimbille
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- TRIUMF, Life Sciences Division, Vancouver, Canada.
| |
Collapse
|
25
|
Xiao D, Han P, Jiang Y, Duan X, Ruan Q, Zhang Z, Chen X, Zhang J. Preparation, Biological Evaluation, and First-in-Human Single-Photon Emission Computed Tomography (SPECT) Study of 99mTc-Labeled Prostate-Specific Membrane Antigen (PSMA)-Targeted Radiotracers Containing Triazole with Reduced Kidneys Accumulation. ACS Pharmacol Transl Sci 2024; 7:1335-1347. [PMID: 38751628 PMCID: PMC11092200 DOI: 10.1021/acsptsci.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
Prostate-specific membrane antigen (PSMA), a well-established biological marker for prostate cancer (PCa) imaging and therapy, is overexpressed on the surface of prostate cancer lesions. In this study, a triazole ring was introduced into the linker by click chemistry to generate a HYNIC-derived ligand (T), which exhibited good PSMA affinity (Ki = 2.23 nM). Eight stable 99mTc-labeled complexes, [99mTc]Tc-T-Mn (n = 1-8), with hydrophilic properties were synthesized by incorporating different coligands at high radiochemical yields and purities without purification. The radioligands were concentrated in the kidneys of healthy Kunming male mice and were significantly blocked by the PSMA inhibitor ZJ-43. The uptake of the optimized complex [99mTc]Tc-T-M2 was correlated with PSMA, and it had good PSMA affinity (Kd = 5.42 nM). [99mTc]Tc-T-M2 accumulated on LNCaP (PSMA++) tumors and was significantly blocked by ZJ-43 at 2 h p.i., indicating high PSMA specificity. Relatively suitable kidney uptake was beneficial for reducing kidneys exposure in patients. SPECT/CT imaging of [99mTc]Tc-T-M2 in LNCaP (PSMA++) or 22Rv1 (PSMA+) tumor-bearing mice revealed high tumor uptake, low background uptake (especially low kidney uptake (49.06 ± 9.20 %ID/g) at 2 h p.i.), and obvious inhibition by ZJ-43, whereas PC-3 (PSMA-) tumors were undetectable. A freeze-dried [99mTc]Tc-T-M2 kit was successfully developed (T-M2 kit). Preliminary clinical trials showed that [99mTc]Tc-T-M2 clearly identified small prostate cancer lesions and has potential for clinical application.
Collapse
Affiliation(s)
- Di Xiao
- Key
Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Peiwen Han
- Key
Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Yuhao Jiang
- Key
Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiaojiang Duan
- Department
of Nuclear Medicine, Peking University First
Hospital, Beijing 100034, P.R. China
| | - Qing Ruan
- Key
Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhanbin Zhang
- Key
Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiaoliang Chen
- Department
of Nuclear Medicine, Chongqing University
Cancer Hospital, Chongqing 400030, P.R. China
- Hubei
Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji
Medical College, Huazhong University of
Science and Technology, Wuhan 430022, P.R. China
| | - Junbo Zhang
- Key
Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA
Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
26
|
Shalgunov V, van den Broek SL, Andersen IV, Raval NR, Schäfer G, Barz M, Herth MM, Battisti UM. Evaluation of F-537-Tetrazine in a model for brain pretargeting imaging. Comparison to N-(3-[ 18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine. Nucl Med Biol 2024; 128-129:108877. [PMID: 38232579 DOI: 10.1016/j.nucmedbio.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Brain pretargeted nuclear imaging for the diagnosis of various neurodegenerative diseases is a quickly developing field. The tetrazine ligation is currently the most explored approach to achieve this goal due to its remarkable properties. In this work, we evaluated the performance of F-537-Tetrazine, previously developed by Biogen, and N-(3-[18F]fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine, previously developed in our group, thereby allowing for the direct comparison of these two imaging probes. The evaluation included synthesis, radiolabeling and a comparison of the physicochemical properties of the compounds. Furthermore, their performance was evaluated by in vitro and in vivo pretargeting models. This study indicated that N-(3-[18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine might be more suited for brain pretargeted imaging.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nakul R Raval
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Gabriela Schäfer
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|