1
|
Cai MZ, Wen Z, Li HZ, Yang Y, Liang JX, Liao YS, Wang JY, Wang LY, Zhang NY, Kamei KI, An HW, Wang H. Peptide-based fluorescent probes for the diagnosis of tumor and image-guided surgery. Biosens Bioelectron 2025; 276:117255. [PMID: 39965418 DOI: 10.1016/j.bios.2025.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Fluorescent contrast agents are instrumental in amplifying signals, thereby enhancing the sensitivity and accuracy of live optical imaging. However, a significant proportion of traditional fluorescent contrast agents exhibit drawbacks such as short half-life, suboptimal biocompatibility, and inadequate tumor targeting, all of which impede effective imaging guidance. Peptides, derived from natural structures, offer a flexible modular design that can be precisely engineered and adjusted using synthetic methods to achieve specific biological activity and pharmacokinetic properties. They bind with designated receptors to exert their effects, demonstrating high specificity. The development of fluorescent probes based on peptides significantly overcomes the limitations of conventional contrast agents, offering superior performance. This article provides a comprehensive review of three strategies for constructing peptide-based fluorescent probes, delving into their distinct design concepts, mechanisms of action, and innovative aspects. It also highlights the potential applications of peptide-based fluorescent probes in tumor diagnosis and image-guided surgery, offering insights into their future clinical transformation.
Collapse
Affiliation(s)
- Ming-Ze Cai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Zhuan Wen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Hao-Ze Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Yang Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Si Liao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jing-Yao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Ying Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Suzuki H, Kasai K, Kimura Y, Miyata S. UV/ozone surface modification combined with atmospheric pressure plasma irradiation for cell culture plastics to improve pluripotent stem cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112012. [PMID: 33812631 DOI: 10.1016/j.msec.2021.112012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Culturing pluripotent stem cells effectively requires substrates coated with feeder cell layers or cell-adhesive matrices. It is difficult to employ pluripotent stem cells as resources for regenerative medicine due to risks of culture system contamination by animal-derived factors, or the large costs associated with the use of adhesive matrices. To enable a coating-free culture system, we focused on UV/ozone surface modification and atmospheric pressure plasma treatment for polystyrene substrates, to improve adhesion and proliferation of pluripotent stem cells. In this study, to develop a feeder- and matrix coating-free culture system for embryonic stem cells (ESCs), mouse ESCs were cultured on polystyrene substrates that were surface-modified using UV/ozone-plasma combined treatment. mESCs could be successfully cultured under feeder-free conditions upon UV/ozone-plasma combined treatment of culture substrates, without any further chemical treatments, and showed similar proliferation rates to those of cells grown on the feeder cell layer or matrix-coated substrates.
Collapse
Affiliation(s)
- Hayato Suzuki
- School of Integrated Design Engineering, Graduate School of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kohei Kasai
- School of Integrated Design Engineering, Graduate School of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuka Kimura
- Department of Mechanical Engineering, Faculty of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
3
|
Meco E, Zheng WS, Sharma AH, Lampe KJ. Guiding Oligodendrocyte Precursor Cell Maturation With Urokinase Plasminogen Activator-Degradable Elastin-like Protein Hydrogels. Biomacromolecules 2020; 21:4724-4736. [PMID: 32816463 DOI: 10.1021/acs.biomac.0c00828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Demyelinating injuries and diseases, like multiple sclerosis, affect millions of people worldwide. Oligodendrocyte precursor cells (OPCs) have the potential to repair demyelinated tissues because they can both self-renew and differentiate into oligodendrocytes (OLs), the myelin producing cells of the central nervous system (CNS). Cell-matrix interactions impact OPC differentiation into OLs, but the process is not fully understood. Biomaterial hydrogel systems help to elucidate cell-matrix interactions because they can mimic specific properties of native CNS tissues in an in vitro setting. We investigated whether OPC maturation into OLs is influenced by interacting with a urokinase plasminogen activator (uPA) degradable extracellular matrix (ECM). uPA is a proteolytic enzyme that is transiently upregulated in the developing rat brain, with peak uPA expression correlating with an increase in myelin production in vivo. OPC-like cells isolated through the Mosaic Analysis with Double Marker technique (MADM OPCs) produced low-molecular-weight uPA in culture. MADM OPCs were encapsulated into two otherwise similar elastin-like protein (ELP) hydrogel systems: one that was uPA degradable and one that was nondegradable. Encapsulated MADM OPCs had similar viability, proliferation, and metabolic activity in uPA degradable and nondegradable ELP hydrogels. Expression of OPC maturation-associated genes, however, indicated that uPA degradable ELP hydrogels promoted MADM OPC maturation although not sufficiently for these cells to differentiate into OLs.
Collapse
Affiliation(s)
- Edi Meco
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, United States
| | - W Sharon Zheng
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, MR5 2010, Box 800759, Charlottesville, Virginia 22908, United States
| | - Anahita H Sharma
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, MR5 2010, Box 800759, Charlottesville, Virginia 22908, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
4
|
Sharmin A, Adnan N, Haque A, Mashimo Y, Mie M, Kobatake E. Construction of multifunctional fusion proteins with a laminin-derived short peptide to promote neural differentiation of mouse induced pluripotent stem cells. J Biomed Mater Res B Appl Biomater 2020; 108:2691-2698. [PMID: 32167675 DOI: 10.1002/jbm.b.34600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/18/2020] [Accepted: 02/22/2020] [Indexed: 11/07/2022]
Abstract
There is growing interest in the functional roles of the extracellular matrix (ECM) in regulating the fate of pluripotent stem cells (PSCs). An artificially bioengineered ECM provides an excellent model for studying the molecular mechanisms underlying self-renewal and differentiation of PSCs, without multiple unknown and variable factors associated with natural substrates. Here, we have engineered multifunctional fusion proteins that are based on peptides from laminin, including p20, RGD, and elastin-like polypeptide (ELP), where laminin peptides work as cell adhesion molecules (CAMs) and ELP to promote anchorage. The functionality of these chimeric proteins, referred to as ERE-p20 and E-p20, was assessed by determining their ability to immobilize cells on a hydrophobic polystyrene surface, improve mouse induced pluripotent stem cells (miPSCs) attachment, and promote miPSC differentiation to neural progenitors. ERE-p20 and E-p20 proteins showed hydrophobic binding saturation to the polystyrene plates around 500 nM (2.39 μg/cm2 ) and 750 nM (2.27 μg/cm2 ) protein concentrations, respectively. The apparent maximum cell binding to ERE-p20 and E-p20 was approximately 81% and 73%, respectively, relative to gelatin. For neural precursors, neurite outgrowth was enhanced by the presence of RGD and p20 peptides. The expression levels of neuronal marker protein MAP2 were upregulated approximately 2.5-fold and threefold by ERE-p20 and E-p20, respectively, relative to laminin. Overall, we have shown that elastin-mimetic fusion proteins consisting of p20 with and without RGD peptides are able to induce neuronal differentiation. In conclusion, our newly designed bioengineered fusion proteins allow preparation of specific bioactive matrices or coating/scaffold for miPSCs differentiation.
Collapse
Affiliation(s)
- Afroza Sharmin
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nihad Adnan
- Department of Microbiology, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | | | - Yasumasa Mashimo
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Santos M, Serrano-Dúcar S, González-Valdivieso J, Vallejo R, Girotti A, Cuadrado P, Arias FJ. Genetically Engineered Elastin-based Biomaterials for Biomedical Applications. Curr Med Chem 2020; 26:7117-7146. [PMID: 29737250 DOI: 10.2174/0929867325666180508094637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 01/31/2023]
Abstract
Protein-based polymers are some of the most promising candidates for a new generation of innovative biomaterials as recent advances in genetic-engineering and biotechnological techniques mean that protein-based biomaterials can be designed and constructed with a higher degree of complexity and accuracy. Moreover, their sequences, which are derived from structural protein-based modules, can easily be modified to include bioactive motifs that improve their functions and material-host interactions, thereby satisfying fundamental biological requirements. The accuracy with which these advanced polypeptides can be produced, and their versatility, self-assembly behavior, stimuli-responsiveness and biocompatibility, means that they have attracted increasing attention for use in biomedical applications such as cell culture, tissue engineering, protein purification, surface engineering and controlled drug delivery. The biopolymers discussed in this review are elastin-derived protein-based polymers which are biologically inspired and biomimetic materials. This review will also focus on the design, synthesis and characterization of these genetically encoded polymers and their potential utility for controlled drug and gene delivery, as well as in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mercedes Santos
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Sofía Serrano-Dúcar
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | | | - Reinaldo Vallejo
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Alessandra Girotti
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Purificación Cuadrado
- BIOFORGE Research Group, CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | | |
Collapse
|
6
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
7
|
Wieduwild R, Wetzel R, Husman D, Bauer S, El-Sayed I, Duin S, Murawala P, Thomas AK, Wobus M, Bornhäuser M, Zhang Y. Coacervation-Mediated Combinatorial Synthesis of Biomatrices for Stem Cell Culture and Directed Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706100. [PMID: 29659062 DOI: 10.1002/adma.201706100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Combinatorial screening represents a promising strategy to discover biomaterials for tailored cell culture applications. Although libraries incorporating different biochemical cues have been investigated, few simultaneously recapitulate relevant biochemical, physical, and dynamic features of the extracellular matrix (ECM). Here, a noncovalent system based on liquid-liquid phase separation (coacervation) and gelation mediated by glycosaminoglycan (GAG)-peptide interactions is reported. Multiple biomaterial libraries are generated using combinations of sulfated glycosaminoglycans and poly(ethylene glycol)-conjugated peptides. Screening these biomaterials reveals preferred biomatrices for the attachment of six cell types, including primary mesenchymal stromal cells (MSCs) and primary neural precursor cells (NPCs). Incorporation of GAGs sustains the expansion of all tested cell types comparable to standard cell culture surfaces, while osteogenic differentiation of MSC and neuronal differentiation of NPC are promoted on chondroitin and heparan biomatrices, respectively. The presented noncovalent system provides a powerful tool for developing tissue-specific ECM mimics.
Collapse
Affiliation(s)
- Robert Wieduwild
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Richard Wetzel
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Dejan Husman
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Sophie Bauer
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Iman El-Sayed
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Sarah Duin
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Priyanka Murawala
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Manja Wobus
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
- University Hospital Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Fetscherstraße 74, 01307, Dresden, Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| |
Collapse
|