1
|
Persico M, Sessa R, Cesaro E, Dini I, Costanzo P, Ritieni A, Fattorusso C, Grosso M. A multidisciplinary approach disclosing unexplored Aflatoxin B1 roles in severe impairment of vitamin D mechanisms of action. Cell Biol Toxicol 2023; 39:1275-1295. [PMID: 36066700 PMCID: PMC10425525 DOI: 10.1007/s10565-022-09752-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Aflatoxin B1 (AFB1), produced by fungi of the genus Aspergillus, is the most toxic and carcinogenic mycotoxin among the classes of aflatoxins. Previous research showed that AFB1 affects vitamin D receptor (VDR) expression. In the present study, integrated computational and experimental studies were carried out to investigate how AFB1 can interfere with Vitamin D signalling. A competitive antagonism of AFB1 toward RXRα and VDR was hypothesized by comparing the docked complex of AFB1/RXRα and AFB1/VDR ligand-binding domain (LBD) with the X-ray structures of RXRα and VDR bound to known ligands. Accordingly, we demonstrated that AFB1 can affect vitamin D-mediated transcriptional activation of VDR by impairing the formation of protein complexes containing both VDR-RXRα and RXRα/RAR and affecting the subcellular localization of VDR and RXRα. As a whole, our data indicate that AFB1 can interfere with different molecular pathways triggered by vitamin D with an antagonistic mechanism of action.
Collapse
Affiliation(s)
- Marco Persico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, Naples, Italy
| | - Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini, Naples, Italy
| | - Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, Naples, Italy
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, Naples, Italy.
- Staff of UNESCO Chair On Health Education and Sustainable Development, University of Naples Federico II, Naples, Italy.
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini, Naples, Italy
| |
Collapse
|
2
|
Nagamani S, Jaiswal L, Sastry GN. Deciphering the importance of MD descriptors in designing Vitamin D Receptor agonists and antagonists using machine learning. J Mol Graph Model 2023; 118:108346. [PMID: 36208593 DOI: 10.1016/j.jmgm.2022.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
The Vitamin D Receptor (VDR) ligand-binding domain undergoes conformation change upon the binding of VDR agonists/antagonists. Helix 12 ((H)12) is one of the important helices at VDR ligand binding and its conformational changes are controlled by the binding of agonists and antagonists molecules. Various molecular modeling studies are available to explain the agonistic and antagonistic activity of vitamin D analogs. In this work, for the first time, we attempted to generate a machine learning model with fingerprints, 2D, 3D and MD descriptors that are specific to Vitamin D analogs and VDR. Initially, 2D and 3D descriptors and fingerprints of 1003 vitamin D analogs were calculated using CDK and RDKit. The machine learning model was generated using descriptors and fingerprints. Further, 80 Vitamin D analogs (40 VDR agonists + 40 VDR antagonists) were docked in the VDR active site. 50ns MD simulation was performed for each protein-ligand complex. Different MD descriptors such as Solvent Accessible Surface Area (SASA), radius of gyration, PC1 and PC2 were calculated and considered along with CDK and RDKit descriptors as features for machine learning calculations. A few other descriptors that are related to VDR conformational changes such as conformation of the (H)12, the angle at kink were considered for machine learning model generation. It was observed that the descriptors calculated from VDR conformational changes i) were able to distinguish between agonists and antagonists ii) provide key and comprehensive information about the unique binding characteristics of agonists and antagonists iii) provide a strong basis for the machine learning model generation. Overall, this study attempts the utilization of descriptors that are specific to a protein conformation will be helpful for the generation of an efficient machine learning model.
Collapse
Affiliation(s)
- Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Lavi Jaiswal
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Takyo M, Sato Y, Hirata N, Tsuchiya K, Ishida H, Kurohara T, Yanase Y, Ito T, Kanda Y, Yamamoto K, Misawa T, Demizu Y. Oligoarginine-Conjugated Peptide Foldamers Inhibiting Vitamin D Receptor-Mediated Transcription. ACS OMEGA 2022; 7:46573-46582. [PMID: 36570290 PMCID: PMC9774327 DOI: 10.1021/acsomega.2c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The vitamin D receptor (VDR) is a nuclear receptor, which is involved in several physiological processes, including differentiation and bone homeostasis. The VDR is a promising target for the development of drugs against cancer and bone-related diseases. To date, several VDR antagonists, which bind to the ligand binding domain of the VDR and compete with the endogenous agonist 1α,25(OH)D3, have been reported. However, these ligands contain a secosteroidal skeleton, which is chemically unstable and complicated to synthesize. A few VDR antagonists with a nonsecosteroidal skeleton have been reported. Alternative inhibitors against VDR transactivation that act via different mechanisms are desirable. Here, we developed peptide-based VDR inhibitors capable of disrupting the VDR-coactivator interaction. It was reported that helical SRC2-3 peptides strongly bound to the VDR and competed with the coactivator in vitro. Therefore, we designed and synthesized a series of SRC2-3 derivatives by the introduction of nonproteinogenic amino acids, such as β-amino acids, and by side-chain stapling to stabilize helical structures and provide resistance against digestive enzymes. In addition, conjugation with a cell-penetrating peptide increased the cell membrane permeability and was a promising strategy for intracellular VDR inhibition. The nona-arginine-conjugated peptides 24 with side-chain stapling and 25 with cyclic β-amino acids showed strong intracellular VDR inhibitory activity, resulting in suppression of the target gene expression and inhibition of the cell differentiation of HL-60 cells. Herein, the peptide design, structure-activity relationship (SAR) study, and biological evaluation of the peptides are described.
Collapse
Affiliation(s)
- Mami Takyo
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Yokohama, Yokohama, Kanagawa 230-0045, Japan
| | - Yumi Sato
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Yokohama, Yokohama, Kanagawa 230-0045, Japan
| | - Naoya Hirata
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Keisuke Tsuchiya
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Ishida
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Takashi Kurohara
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yuta Yanase
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Yokohama, Yokohama, Kanagawa 230-0045, Japan
| | - Takahito Ito
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Yokohama, Yokohama, Kanagawa 230-0045, Japan
| | - Yasunari Kanda
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Keiko Yamamoto
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Takashi Misawa
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- National
Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Yokohama, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Rochel N. Vitamin D and Its Receptor from a Structural Perspective. Nutrients 2022; 14:nu14142847. [PMID: 35889804 PMCID: PMC9325172 DOI: 10.3390/nu14142847] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
The activities of 1α,25-dihydroxyvitamin D3, 1,25D3, are mediated via its binding to the vitamin D receptor (VDR), a ligand-dependent transcription factor that belongs to the nuclear receptor superfamily. Numerous studies have demonstrated the important role of 1,25D3 and VDR signaling in various biological processes and associated pathologies. A wealth of information about ligand recognition and mechanism of action by structural analysis of the VDR complexes is also available. The methods used in these structural studies were mainly X-ray crystallography complemented by NMR, cryo-electron microscopy and structural mass spectrometry. This review aims to provide an overview of the current knowledge of VDR structures and also to explore the recent progress in understanding the complex mechanism of action of 1,25D3 from a structural perspective.
Collapse
Affiliation(s)
- Natacha Rochel
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
5
|
Ekimoto T, Kudo T, Yamane T, Ikeguchi M. Mechanism of Vitamin D Receptor Ligand-Binding Domain Regulation Studied by gREST Simulations. J Chem Inf Model 2021; 61:3625-3637. [PMID: 34189910 DOI: 10.1021/acs.jcim.1c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vitamin D receptor ligand-binding domain (VDR-LBD) undergoes conformational changes upon ligand binding. In this nuclear receptor family, agonistic or antagonistic activities are controlled by the conformation of the helix (H)12. However, all crystal structures of VDR-LBD reported to date correspond to the active H12 conformation, regardless of agonist/antagonist binding. To understand the mechanism of VDR-LBD regulation structurally, conformational samplings of agonist- and antagonist-bound rat VDR-LBD were performed using the generalized replica exchange with solute tempering (gREST) method. The gREST simulations demonstrated different structural responses of rat VDR-LBD to agonist or antagonist binding, whereas in conventional molecular dynamics simulations, the conformation was the same as that of the crystal structures, regardless of agonist/antagonist binding. In the gREST simulations, a spontaneous conformational change of H12 was observed only for the antagonist complex. The different responses to agonist/antagonist binding were attributed to hydrophobic core formation at the ligand-binding pocket and cooperative rearrangements of H11. The gREST method can be applied to the examination of structure-activity relationships for multiple VDR-LBD ligands.
Collapse
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takafumi Kudo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- Center for Computational Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Center for Computational Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Yoshikawa C, Ishida H, Ohashi N, Itoh T. Synthesis of a Coumarin-Based PPARγ Fluorescence Probe for Competitive Binding Assay. Int J Mol Sci 2021; 22:4034. [PMID: 33919837 PMCID: PMC8070791 DOI: 10.3390/ijms22084034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a molecular target of metabolic syndrome and inflammatory disease. PPARγ is an important nuclear receptor and numerous PPARγ ligands were developed to date; thus, efficient assay methods are important. Here, we investigated the incorporation of 7-diethylamino coumarin into the PPARγ agonist rosiglitazone and used the compound in a binding assay for PPARγ. PPARγ-ligand-incorporated 7-methoxycoumarin, 1, showed weak fluorescence intensity in a previous report. We synthesized PPARγ-ligand-incorporating coumarin, 2, in this report, and it enhanced the fluorescence intensity. The PPARγ ligand 2 maintained the rosiglitazone activity. The obtained partial agonist 6 appeared to act through a novel mechanism. The fluorescence intensity of 2 and 6 increased by binding to the ligand binding domain (LBD) of PPARγ and the affinity of reported PPARγ ligands were evaluated using the probe.
Collapse
Affiliation(s)
| | | | | | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; (C.Y.); (H.I.); (N.O.)
| |
Collapse
|
7
|
Belorusova AY, Chalhoub S, Rovito D, Rochel N. Structural Analysis of VDR Complex with ZK168281 Antagonist. J Med Chem 2020; 63:9457-9463. [PMID: 32787090 DOI: 10.1021/acs.jmedchem.0c00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin D receptor (VDR) antagonists prevent the VDR activation function helix 12 from folding into its active conformation, thus affecting coactivator recruitment and antagonizing the transcriptional regulation induced by 1α,25-dihydroxyvitamin D3. Here, we report the crystal structure of the zebrafish VDR ligand-binding domain in complex with the ZK168281 antagonist, revealing that the ligand prevents optimal folding of the C-terminal region of VDR. This interference was confirmed by hydrogen-deuterium exchange mass spectrometry (HDX-MS) in solution.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France.,Medicinal Chemistry, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
8
|
Ibe K, Yamada T, Okamoto S. Synthesis and vitamin D receptor affinity of 16-oxa vitamin D 3 analogues. Org Biomol Chem 2019; 17:10188-10200. [PMID: 31769776 DOI: 10.1039/c9ob02339a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 16-oxa-vitamin D3 analogues were synthesized using a tandem Ti(ii)-mediated enyne cyclization/Cu-catalyzed allylation, Ru-catalyzed ring-closing metathesis reaction, and a low-valent titanium (LVT)-mediated stereoselective radical reduction of 8α,14α-epoxide as the key steps for the synthesis of the 16-oxa-C,D ring unit. The vitamin D receptor-binding affinity of the synthesized analogues, 16-oxa-1α,25-(OH)2VD3 and 16-oxa-19-nor-1α,25-(OH)2VD3, was evaluated by fluorescence polarization vitamin D receptor competitor assay and time-resolved fluorescence energy transfer vitamin D receptor co-activator assay.
Collapse
Affiliation(s)
- Kouta Ibe
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
9
|
Yamamoto K. Discovery of Nuclear Receptor Ligands and Elucidation of Their Mechanisms of Action. Chem Pharm Bull (Tokyo) 2019; 67:609-619. [DOI: 10.1248/cpb.c19-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
10
|
Abstract
![]()
For many individuals,
in particular during winter, supplementation
with the secosteroid vitamin D3 is essential for the prevention
of bone disorders, muscle weakness, autoimmune diseases, and possibly
also different types of cancer. Vitamin D3 acts via its
metabolite 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]
as potent agonist of the transcription factor vitamin D receptor (VDR).
Thus, vitamin D directly affects chromatin structure and gene regulation
at thousands of genomic loci, i.e., the epigenome and transcriptome
of its target tissues. Modifications of 1,25(OH)2D3 at its
side-chain, A-ring, triene system, or C-ring, alone and in combination,
as well as nonsteroidal mimics provided numerous potent VDR agonists
and some antagonists. The nearly 150 crystal structures of VDR’s
ligand-binding domain with various vitamin D compounds allow a detailed
molecular understanding of their action. This review discusses the
most important vitamin D analogs presented during the past 10 years
and molecular insight derived from new structural information on the
VDR protein.
Collapse
Affiliation(s)
- Miguel A Maestro
- Departamento de Química-CICA , Universidade da Coruña , ES-15071 A Coruña , Spain
| | - Ferdinand Molnár
- School of Science and Technology, Department of Biology , Nazarbayev University , KZ-010000 Astana , Kazakhstan
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine , University of Eastern Finland , FI-70211 Kuopio , Finland
| |
Collapse
|
11
|
Yoshizawa M, Itoh T, Hori T, Kato A, Anami Y, Yoshimoto N, Yamamoto K. Identification of the Histidine Residue in Vitamin D Receptor That Covalently Binds to Electrophilic Ligands. J Med Chem 2018; 61:6339-6349. [DOI: 10.1021/acs.jmedchem.8b00774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mami Yoshizawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tatsuya Hori
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Akira Kato
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yasuaki Anami
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuko Yoshimoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
12
|
Mahapatra D, Franzosa JA, Roell K, Kuenemann MA, Houck KA, Reif DM, Fourches D, Kullman SW. Confirmation of high-throughput screening data and novel mechanistic insights into VDR-xenobiotic interactions by orthogonal assays. Sci Rep 2018; 8:8883. [PMID: 29891985 PMCID: PMC5995905 DOI: 10.1038/s41598-018-27055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/30/2018] [Indexed: 01/21/2023] Open
Abstract
High throughput screening (HTS) programs have demonstrated that the Vitamin D receptor (VDR) is activated and/or antagonized by a wide range of structurally diverse chemicals. In this study, we examined the Tox21 qHTS data set generated against VDR for reproducibility and concordance and elucidated functional insights into VDR-xenobiotic interactions. Twenty-one potential VDR agonists and 19 VDR antagonists were identified from a subset of >400 compounds with putative VDR activity and examined for VDR functionality utilizing select orthogonal assays. Transient transactivation assay (TT) using a human VDR plasmid and Cyp24 luciferase reporter construct revealed 20/21 active VDR agonists and 18/19 active VDR antagonists. Mammalian-2-hybrid assay (M2H) was then used to evaluate VDR interactions with co-activators and co-regulators. With the exception of a select few compounds, VDR agonists exhibited significant recruitment of co-regulators and co-activators whereas antagonists exhibited considerable attenuation of recruitment by VDR. A unique set of compounds exhibiting synergistic activity in antagonist mode and no activity in agonist mode was identified. Cheminformatics modeling of VDR-ligand interactions were conducted and revealed selective ligand VDR interaction. Overall, data emphasizes the molecular complexity of ligand-mediated interactions with VDR and suggest that VDR transactivation may be a target site of action for diverse xenobiotics.
Collapse
Affiliation(s)
- Debabrata Mahapatra
- Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Jill A Franzosa
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, Raleigh, North Carolina, USA
| | - Kyle Roell
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Melaine Agnes Kuenemann
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, RTP, Raleigh, North Carolina, USA
| | - David M Reif
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Seth W Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA. .,Program in Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
13
|
Kojima H, Itoh T, Yamamoto K. On-site reaction for PPARγ modification using a specific bifunctional ligand. Bioorg Med Chem 2017; 25:6492-6500. [DOI: 10.1016/j.bmc.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
14
|
Kato A, Yamao M, Hashihara Y, Ishida H, Itoh T, Yamamoto K. Vitamin D Analogues with a p-Hydroxyphenyl Group at the C25 Position: Crystal Structure of Vitamin D Receptor Ligand-Binding Domain Complexed with the Ligand Explains the Mechanism Underlying Full Antagonistic Action. J Med Chem 2017; 60:8394-8406. [DOI: 10.1021/acs.jmedchem.7b00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akira Kato
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Yamao
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuta Hashihara
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
15
|
Egawa D, Itoh T, Kato A, Kataoka S, Anami Y, Yamamoto K. SRC2-3 binds to vitamin D receptor with high sensitivity and strong affinity. Bioorg Med Chem 2017; 25:568-574. [DOI: 10.1016/j.bmc.2016.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 11/26/2022]
|
16
|
Anami Y, Shimizu N, Ekimoto T, Egawa D, Itoh T, Ikeguchi M, Yamamoto K. Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics. J Med Chem 2016; 59:7888-900. [DOI: 10.1021/acs.jmedchem.6b00682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuaki Anami
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobutaka Shimizu
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toru Ekimoto
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Daichi Egawa
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Mitsunori Ikeguchi
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Keiko Yamamoto
- Laboratory
of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
17
|
Asano L, Waku T, Abe R, Kuwabara N, Ito I, Yanagisawa J, Nagasawa K, Shimizu T. Regulation of the vitamin D receptor by vitamin D lactam derivatives. FEBS Lett 2016; 590:3270-9. [PMID: 27500498 DOI: 10.1002/1873-3468.12348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/06/2022]
Abstract
The active metabolite of vitamin D3 , 1α,25-dihydroxyvitamin D3 , acts as a ligand for the vitamin D receptor (VDR) and activates VDR-mediated gene expression. Recently, we characterized 1α,25-dihydroxyvitamin D3 -26,23-lactams (DLAMs), which mimic vitamin D3 metabolites, as noncalcemic VDR ligands that barely activate the receptor. In this study, we present structural insights onto the regulation of VDR function by DLAMs. X-ray crystallographic analysis revealed that DLAMs induced a large conformational change in the loop region between helices H6 and H7 in the VDR ligand-binding domain. Our structural analysis suggests that targeting of the loop region may be a new mode of VDR regulation.
Collapse
Affiliation(s)
- Lisa Asano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Tsuyoshi Waku
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Rumi Abe
- Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Naoyuki Kuwabara
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Ichiaki Ito
- Graduate School of Life and Environmental Sciences/Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junn Yanagisawa
- Graduate School of Life and Environmental Sciences/Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|