1
|
Shaw PJ, Prommana P, Thongpanchang C, Kamchonwongpaisan S, Kongkasuriyachai D, Wang Y, Zhou Z, Zhou Y. Antimalarial mechanism of action of the natural product 9-methoxystrobilurin G. Mol Omics 2024; 20:584-594. [PMID: 39262389 DOI: 10.1039/d4mo00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The natural product 9-methoxystrobilurin G (9MG) from Favolaschia spp basidiomycetes is a potent and selective antimalarial. The mechanism of action of 9MG is unknown. We induced 9MG resistance in Plasmodium falciparum 3D7 and Dd2 strains and identified mutations associated with resistance by genome sequencing. All 9MG-resistant clones possessed missense mutations in the cytochrome b (CYTB) gene, a key component of mitochondrial complex III. The mutations map to the quinol oxidation site of CYTB, which is also the target of antimalarials such as atovaquone. In a complementary approach to identify protein targets of 9MG, a photoactivatable derivative of 9MG was synthesized and applied in chemoproteomic-based target profiling. Three components of mitochondrial complex III (QCR7, QCR9, and COX15) were specifically enriched consistent with 9MG targeting CYTB and complex III function in P. falciparum. Inhibition of complex III activity by 9MG was confirmed by ubiquinone cytochrome c reductase assay using P. falciparum extract. The findings from this study may be useful for developing novel antimalarials targeting CYTB.
Collapse
Affiliation(s)
- Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chawanee Thongpanchang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiqing Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China.
| |
Collapse
|
2
|
Banahene N, Peters-Clarke TM, Biegas KJ, Shishkova E, Hart EM, McKitterick AC, Kambitsis NH, Johnson UG, Bernhardt TG, Coon JJ, Swarts BM. Chemical Proteomics Strategies for Analyzing Protein Lipidation Reveal the Bacterial O-Mycoloylome. J Am Chem Soc 2024; 146:12138-12154. [PMID: 38635392 PMCID: PMC11066868 DOI: 10.1021/jacs.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Trenton M. Peters-Clarke
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Evgenia Shishkova
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Elizabeth M. Hart
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Amelia C. McKitterick
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Nikolas H. Kambitsis
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Ulysses G. Johnson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Thomas G. Bernhardt
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53562, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|
3
|
Geng Y, Li W, Wong NK, Xue F, Li Q, Zhang Y, Xu J, Deng Z, Zhou Y. Discovery of Artemisinins as Microsomal Prostaglandins Synthase-2 Inhibitors for the Treatment of Colorectal Cancer via Chemoproteomics. J Med Chem 2024; 67:2083-2094. [PMID: 38287228 DOI: 10.1021/acs.jmedchem.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.
Collapse
Affiliation(s)
- Yiyun Geng
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Fuchong Xue
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
4
|
Ruan ML, Liu Y, Zhang C, Mao X, Hu D, Lok CN, Yam JWP, Che CM. Dihydroartemisinin engages liver fatty acid binding protein and suppresses metastatic hepatocellular carcinoma growth. Chem Commun (Camb) 2023; 59:2747-2750. [PMID: 36757177 DOI: 10.1039/d3cc00265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Dihydroartemisinin non-covalently binds liver fatty acid binding protein (FABP1) with micromolar affinity, acts as a FABP1-dependent peroxisome proliferator-activated receptor alpha agonist and inhibits metastatic hepatocellular carcinoma growth.
Collapse
Affiliation(s)
- Mei-Ling Ruan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.,State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chunlei Zhang
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Xiaowen Mao
- Department of Pathology, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Di Hu
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong, P. R. China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
5
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
6
|
Carvalho L, Bernardes GJL. The Impact of Activity-based Protein Profiling in Malaria Drug Discovery. ChemMedChem 2022; 17:e202200174. [PMID: 35506504 PMCID: PMC9401580 DOI: 10.1002/cmdc.202200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Activity-based protein profiling (ABPP) is an approach used at the interface of chemical biology and proteomics that uses small molecular probes to provide dynamic fingerprints of enzymatic activity in complex proteomes. Malaria is a disease caused by Plasmodium parasites with a significant death burden and for which new therapies are actively being sought. Here, we compile the main achievements from ABPP studies in malaria and highlight the probes used and the different downstream platforms for data analysis. ABPP has excelled at studying Plasmodium cysteine proteases and serine hydrolase families, the targeting of the proteasome and metabolic pathways, and in the deconvolution of targets and mechanisms of known antimalarials. Despite the major impact in the field, many antimalarials and enzymatic families in Plasmodium remain to be studied, which suggests ABPP will be an evergreen technique in the field.
Collapse
Affiliation(s)
- Luis Carvalho
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Rd, Yusuf Hamied Department of Chemistry, CB2 1EW, Cambridge, UNITED KINGDOM
| | - Gonçalo J L Bernardes
- University of Cambridge Department of Chemistry, Yusuf Hamied Department of Chemistry, Lensfield Rd, Yusuf Hamied Department of Chemistry, CB2 1EW, Cambridge, UNITED KINGDOM
| |
Collapse
|
7
|
Cantrell MS, Wall JD, Pu X, Turner M, Woodbury L, Fujise K, McDougal OM, Warner LR. Expression and purification of a cleavable recombinant fortilin from Escherichia coli for structure activity studies. Protein Expr Purif 2022; 189:105989. [PMID: 34626801 PMCID: PMC8557625 DOI: 10.1016/j.pep.2021.105989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Complications related to atherosclerosis account for approximately 1 in 4 deaths in the United States and treatment has focused on lowering serum LDL-cholesterol levels with statins. However, approximately 50% of those diagnosed with atherosclerosis have blood cholesterol levels within normal parameters. Human fortilin is an anti-apoptotic protein and a factor in macrophage-mediated atherosclerosis and is hypothesized to protect inflammatory macrophages from apoptosis, leading to subsequent cardiac pathogenesis. Fortilin is unique because it provides a novel drug target for atherosclerosis that goes beyond lowering cholesterol and utilization of a solution nuclear magnetic resonance (NMR) spectroscopy, structure-based drug discovery approach requires milligram quantities of pure, bioactive, recombinant fortilin. Here, we designed expression constructs with different affinity tags and protease cleavage sites to find optimal conditions to obtain the quantity and purity of protein necessary for structure activity relationship studies. Plasmids encoding fortilin with maltose binding protein (MBP), 6-histidine (6His) and glutathione-S-transferase (GST), N- terminal affinity tags were expressed and purified from Escherichia coli (E. coli). Cleavage sites with tobacco etch virus (TEV) protease and human rhinovirus (HRV) 3C protease were assessed. Despite high levels of expression of soluble protein, the fusion constructs were resistant to proteinases without the inclusion of amino acids between the cleavage site and N-terminus. We surveyed constructs with increasing lengths of glycine/serine (GGS) linkers between the cleavage site and fortilin and found that inclusion of at least one GGS insert led to successful protease cleavage and pure fortilin with conserved binding to calcium as measured by NMR.
Collapse
Affiliation(s)
- Maranda S Cantrell
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, 83725, USA; Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA
| | - Jackson D Wall
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Matthew Turner
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Ken Fujise
- Harborview Medical Center, University of Washington, Seattle, WA, 98104-2499, USA
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA
| | - Lisa R Warner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
8
|
Woodley CM, Amado PSM, Cristiano MLS, O'Neill PM. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med Res Rev 2021; 41:3062-3095. [PMID: 34355414 DOI: 10.1002/med.21849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Artemisinin combination therapies (ACTs) have been used as the first-line treatments against Plasmodium falciparum malaria for decades. Recent advances in chemical proteomics have shed light on the complex mechanism of action of semi-synthetic artemisinin (ARTs), particularly their promiscuous alkylation of parasite proteins via previous heme-mediated bioactivation of the endoperoxide bond. Alarmingly, the rise of resistance to ART in South East Asia and the synthetic limitations of the ART scaffold have pushed the course for the necessity of fully synthetic endoperoxide-based antimalarials. Several classes of synthetic endoperoxide antimalarials have been described in literature utilizing various endoperoxide warheads including 1,2-dioxanes, 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes. Two of these classes, the 1,2,4-trioxolanes (arterolane and artefenomel) and the 1,2,4,5-tetraoxanes (N205 and E209) based antimalarials, have been explored extensively and are still in active development. In contrast, the most recent publication pertaining to the development of the 1,2-dioxane, Arteflene, and 1,2,4-trioxanes fenozan-50F, DU1301, and PA1103/SAR116242 was published in 2008. This review summarizes the synthesis, biological and clinical evaluation, and mechanistic studies of the most developed synthetic endoperoxide antimalarials, providing an update on those classes still in active development.
Collapse
Affiliation(s)
| | - Patrícia S M Amado
- Department of Chemistry, University of Liverpool, Liverpool, UK.,Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Qiu N, Abegg D, Guidi M, Gilmore K, Seeberger PH, Adibekian A. Artemisinin inhibits NRas palmitoylation by targeting the protein acyltransferase ZDHHC6. Cell Chem Biol 2021; 29:530-537.e7. [PMID: 34358442 DOI: 10.1016/j.chembiol.2021.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022]
Abstract
Protein S-palmitoylation is a post-translational modification that plays a crucial role in cancer cells by regulating the function and localization of oncoproteins and tumor suppressor proteins. Here, we identify artemisinin (ART), a clinically approved antimalarial endoperoxide natural product with promising anticancer activities, as an inhibitor of the ER-residing palmitoyl transferase ZDHHC6 in cancer cells using a chemoproteomic approach. We show that ART covalently binds and inhibits ZDHHC6 to reduce palmitoylation of the oncogenic protein NRas, disrupt NRas subcellular localization, and attenuate the downstream pro-proliferative signaling cascades. Our study identifies artemisinin as a non-lipid-based palmitoylation inhibitor targeting a specific palmitoyl acyltransferase and provides valuable mechanistic insights into the anticancer activity of artemisinins that are currently being studied in human clinical trials for different cancers.
Collapse
Affiliation(s)
- Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Mara Guidi
- Department of Molecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Muhlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Kerry Gilmore
- Department of Molecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Muhlenberg 1, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Molecular Systems, Max-Planck Institute for Colloids and Interfaces, Am Muhlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
11
|
Bai G, Gao Y, Liu S, Shui S, Liu G. pH-dependent rearrangement determines the iron-activation and antitumor activity of artemisinins. Free Radic Biol Med 2021; 163:234-242. [PMID: 33359684 DOI: 10.1016/j.freeradbiomed.2020.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/03/2023]
Abstract
The action mechanisms of artemisinins remains elusive for decades, and one long-standing question is whether the indispensable peroxide group is activated by iron or heme. Although heme usually reacts faster with artemisinins than iron does, we have found that rearrangement of dihydroartemisinin (DHA) into monoketo-aldehyde-peroxyhemiacetal (MKA) under physiological conditions can significantly enhance its reaction towards iron. The rearrangement is pH-dependent and the derived MKA is identified by LC-MS in the cellular metabolites of DHA in cancer cells. MKA reacts quickly with ferrous irons to afford reactive carbon-centered radicals and can inhibit enzyme activities in vitro. Moreover, MKA oxidizes ferrous irons to ferric irons, which may explain the effect of DHA on decreasing cellular labile iron pool (LIP). Both addition of exogenous iron and increase in LIP via triggering ferroptosis can enhance the cytotoxicity of DHA against cancer cells. While artesunate (ATS) can also decompose to MKA after hydrolyzing into DHA, the other artemisinins of lower antitumor activity, e.g. artemisinin (ART), artemether (ATM) and arteether (ATE), exhibit negligible hydrolysis and rearrangement under the same conditions. Our study reveals the vital role of molecular rearrangement to the activation and activity of artemisinins and provides a new strategy for designing antitumor molecules containing endoperoxide group.
Collapse
Affiliation(s)
- Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yibo Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijin Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sufang Shui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
12
|
Yang J, He Y, Li Y, Zhang X, Wong YK, Shen S, Zhong T, Zhang J, Liu Q, Wang J. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol Ther 2020; 216:107697. [PMID: 33035577 PMCID: PMC7537645 DOI: 10.1016/j.pharmthera.2020.107697] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023]
Abstract
Malaria has been a global epidemic health threat since ancient times. It still claims roughly half a million lives every year in this century. Artemisinin and its derivatives, are frontline antimalarial drugs known for their efficacy and low toxicity. After decades of wide use, artemisinins remain our bulwark against malaria. Here, we review decades of efforts that aim to understand the mechanism of action (MOA) of artemisinins, which help explain the specificity and potency of this anti-malarial drug. We summarize the methods and approaches employed to unravel the MOA of artemisinin over the last three decades, showing how the development of advanced techniques can help provide mechanistic insights and resolve some long-standing questions in the field of artemisinin research. We also provide examples to illustrate how to better repurpose artemisinins for anti-cancer therapies by leveraging on MOA. These examples point out a practical direction to engineer artemisinin for broader applications beyond malaria.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingke He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Department of Anaesthesiology, Singapore General Hospital, Singapore
| | - Yinbao Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, JiangXi 341000, China
| | - Xing Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin-Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Shen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
| | - Jigang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Abstract
As the first-line antimalarial drugs, artemisinins gained wide acceptance after the emergence of resistance to chloroquine in the 1950s. Artemisinin-based drugs have saved lives, especially in developing countries. The discovery of artemisinin was unique, timely, and fascinating, and the benefits of artemisinin were with far-reaching implications. Herein, we will give a brief description of various aspects of the development of artemisinin and discuss the position and perspectives of artemisinin-based drugs.
Collapse
|
14
|
Horn A, Dussault PH. A click-based modular approach to introduction of peroxides onto molecules and nanostructures. RSC Adv 2020; 10:44408-44429. [PMID: 35517136 PMCID: PMC9058499 DOI: 10.1039/d0ra09088c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Copper-promoted azide/alkyne cycloadditions (CuAAC) are explored as a tool for modular introduction of peroxides onto molecules and nanomaterials.
Collapse
Affiliation(s)
- Alissa Horn
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | | |
Collapse
|
15
|
Jourdan J, Walz A, Matile H, Schmidt A, Wu J, Wang X, Dong Y, Vennerstrom JL, Schmidt RS, Wittlin S, Mäser P. Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infect Dis 2019; 5:2067-2075. [PMID: 31626733 DOI: 10.1021/acsinfecdis.9b00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Annabelle Walz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
16
|
Rabalski AJ, Bogdan AR, Baranczak A. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity. ACS Chem Biol 2019; 14:1940-1950. [PMID: 31430117 DOI: 10.1021/acschembio.9b00424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous reagents have been developed to enable chemical proteomic analysis of small molecule-protein interactomes. However, the performance of these reagents has not been systematically evaluated and compared. Herein, we report our efforts to conduct a parallel assessment of two widely used chemically cleavable linkers equipped with dialkoxydiphenylsilane (DADPS linker) and azobenzene (AZO linker) moieties. Profiling a cellular cysteinome using the iodoacetamide alkyne probe demonstrated a significant discrepancy between the experimental results obtained through the application of each of the reagents. To better understand the source of observed discrepancy, we evaluated the key sample preparation steps. We also performed a mass tolerant database search strategy using MSFragger software. This resulted in identifying a previously unreported artifactual modification on the residual mass of the azobenzene linker. Furthermore, we conducted a comparative analysis of enrichment modes using both cleavable linkers. This effort determined that enrichment of proteolytic digests yielded a far greater number of identified cysteine residues than the enrichment conducted prior to protein digest. Inspired by recent studies where multiplexed quantitative labeling strategies were applied to cleavable biotin linkers, we combined this further optimized protocol using the DADPS cleavable linker with tandem mass tag (TMT) labeling to profile the FDA-approved covalent EGFR kinase inhibitor dacomitinib against the cysteinome of an epidermoid cancer cell line. Our analysis resulted in the detection and quantification of over 10,000 unique cysteine residues, a nearly 3-fold increase over previous studies that used cleavable biotin linkers for enrichment. Critically, cysteine residues corresponding to proteins directly as well as indirectly modulated by dacomitinib treatment were identified. Overall, our study suggests that the dialkoxydiphenylsilane linker could be broadly applied wherever chemically cleavable linkers are required for chemical proteomic characterization of cellular proteomes.
Collapse
Affiliation(s)
- Adam J. Rabalski
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Andrew R. Bogdan
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Aleksandra Baranczak
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| |
Collapse
|
17
|
Wei C, Zhao CX, Liu S, Zhao JH, Ye Z, Wang H, Yu SS, Zhang CJ. Activity-based protein profiling reveals that secondary-carbon-centered radicals of synthetic 1,2,4-trioxolanes are predominately responsible for modification of protein targets in malaria parasites. Chem Commun (Camb) 2019; 55:9535-9538. [PMID: 31334508 DOI: 10.1039/c9cc03719e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endoperoxide-containing antimalarials, such as artemisinin and the synthetic trioxolane OZ439, are prodrugs activated by heme to generate primary and secondary carbon-centered radicals. We employed activity-based protein profiling (ABPP) to show that the secondary-carbon-centered radical of 1,2,4-trioxolanes is primarily responsible for protein labeling in malaria parasites.
Collapse
Affiliation(s)
- Chunyan Wei
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li W, Zhou Y, Tang G, Wong NK, Yang M, Tan D, Xiao Y. Chemoproteomics Reveals the Antiproliferative Potential of Parkinson’s Disease Kinase Inhibitor LRRK2-IN-1 by Targeting PCNA Protein. Mol Pharm 2018; 15:3252-3259. [DOI: 10.1021/acs.molpharmaceut.8b00325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Weichao Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guanghui Tang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nai-Kei Wong
- State Key Discipline of Infection Diseases, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Shenzhen University, Shenzhen 518112, China
| | - Mengquan Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dan Tan
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
19
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
20
|
Abstract
The field of Traditional Chinese Medicine (TCM) represents a vast and largely untapped resource for modern medicine. Exemplified by the success of the antimalarial artemisinin, the recent years have seen a rapid increase in the understanding and application of TCM-derived herbs and formulations for evidence-based therapy. In this review, we summarise and discuss the developmental history, clinical background and molecular basis of an action for several representative TCM-derived medicines, including artemisinin, arsenic trioxide, berberine and Salvia miltiorrhiza or Danshen. Through this, we highlight important examples of how TCM-derived medicines have already contributed to modern medicine, and discuss potential avenues for further research.
Collapse
|
21
|
Hewings DS, Heideker J, Ma TP, AhYoung AP, El Oualid F, Amore A, Costakes GT, Kirchhofer D, Brasher B, Pillow T, Popovych N, Maurer T, Schwerdtfeger C, Forrest WF, Yu K, Flygare J, Bogyo M, Wertz IE. Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes. Nat Commun 2018; 9:1162. [PMID: 29563501 PMCID: PMC5862848 DOI: 10.1038/s41467-018-03511-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 11/25/2022] Open
Abstract
Activity-based probes (ABPs) are widely used to monitor the activity of enzyme families in biological systems. Inferring enzyme activity from probe reactivity requires that the probe reacts with the enzyme at its active site; however, probe-labeling sites are rarely verified. Here we present an enhanced chemoproteomic approach to evaluate the activity and probe reactivity of deubiquitinase enzymes, using bioorthogonally tagged ABPs and a sequential on-bead digestion protocol to enhance the identification of probe-labeling sites. We confirm probe labeling of deubiquitinase catalytic Cys residues and reveal unexpected labeling of deubiquitinases on non-catalytic Cys residues and of non-deubiquitinase proteins. In doing so, we identify ZUFSP (ZUP1) as a previously unannotated deubiquitinase with high selectivity toward cleaving K63-linked chains. ZUFSP interacts with and modulates ubiquitination of the replication protein A (RPA) complex. Our reactive-site-centric chemoproteomics method is broadly applicable for identifying the reaction sites of covalent molecules, which may expand our understanding of enzymatic mechanisms. Deubiquitinases are proteases that cleave after the C-terminus of ubiquitin to hydrolyze ubiquitin chains and cleave ubiquitin from substrates. Here the authors describe a reactive-site-centric chemoproteomics approach to studying deubiquitinase activity, and expand the repertoire of known deubiquitinases.
Collapse
Affiliation(s)
- David S Hewings
- Discovery Oncology, Genentech, South San Francisco, California, 94080, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, California, 94080, USA.,Discovery Chemistry, Genentech, South San Francisco, California, 94080, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Johanna Heideker
- Discovery Oncology, Genentech, South San Francisco, California, 94080, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, California, 94080, USA
| | - Taylur P Ma
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, 94080, USA
| | - Andrew P AhYoung
- Early Discovery Biochemistry, Genentech, South San Francisco, California, 94080, USA
| | - Farid El Oualid
- UbiQ Bio BV, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Alessia Amore
- UbiQ Bio BV, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Gregory T Costakes
- Boston Biochem Inc., 840 Memorial Drive, Cambridge, Massachussetts, 02139, USA
| | - Daniel Kirchhofer
- Early Discovery Biochemistry, Genentech, South San Francisco, California, 94080, USA
| | - Bradley Brasher
- Boston Biochem Inc., 840 Memorial Drive, Cambridge, Massachussetts, 02139, USA
| | - Thomas Pillow
- Discovery Chemistry, Genentech, South San Francisco, California, 94080, USA
| | - Nataliya Popovych
- Early Discovery Biochemistry, Genentech, South San Francisco, California, 94080, USA
| | - Till Maurer
- Structural Biology, Genentech, South San Francisco, California, 94080, USA
| | | | - William F Forrest
- Bioinformatics, Genentech, South San Francisco, California, 94080, USA
| | - Kebing Yu
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, 94080, USA
| | - John Flygare
- Discovery Chemistry, Genentech, South San Francisco, California, 94080, USA.,Merck, 630 Gateway Boulevard, South San Francisco, California, 94080, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Ingrid E Wertz
- Discovery Oncology, Genentech, South San Francisco, California, 94080, USA. .,Early Discovery Biochemistry, Genentech, South San Francisco, California, 94080, USA.
| |
Collapse
|
22
|
Yuan DS, Chen YP, Tan LL, Huang SQ, Li CQ, Wang Q, Zeng QP. Artemisinin: A Panacea Eligible for Unrestrictive Use? Front Pharmacol 2017; 8:737. [PMID: 29089893 PMCID: PMC5651041 DOI: 10.3389/fphar.2017.00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Although artemisinin has been used as anti-malarial drug, accumulating evidence on the extended therapeutic potential of artemisinin emerges. Apart from anti-malaria and anti-tumor, artemisinin can also exert beneficial effects on some metabolic disorders, such as obesity, diabetes, and aging-related diseases. However, whether artemisinin should be applied to treatment of the wide-spectrum diseases is debating. Here, we discuss the predisposition of a raised risk of malarial resistance to artemisinin from consideration of the multi-target and non-specific features of artemisinin.
Collapse
Affiliation(s)
- Dong-Sheng Yuan
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Ping Chen
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Tan
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Qing Huang
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Qing Li
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Ping Zeng
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev 2017. [PMID: 28643446 DOI: 10.1002/med.21446] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer. Great strides have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of artemisinin. Moreover, encouraging data have also been obtained from a limited number of clinical trials to support their anticancer property. However, there are several key gaps in knowledge that continue to serve as significant barriers to the repurposing of artemisinins as effective anticancer agents. This review focuses on important and emerging aspects of this field, highlighting breakthroughs in unresolved questions as well as novel techniques and approaches that have been taken in recent studies. We discuss the mechanism of artemisinin activation in cancer, novel and significant findings with regards to artemisinin target proteins and pathways, new understandings in artemisinin-induced cell death mechanisms, as well as the practical issues of repurposing artemisinin. We believe these will be important topics in realizing the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengchao Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Karunakaran A Kalesh
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Yingke He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|