1
|
Zahednezhad F, Allahyari S, Sarfraz M, Zakeri-Milani P, Feyzizadeh M, Valizadeh H. Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs. Expert Opin Drug Deliv 2024; 21:1363-1384. [PMID: 39282895 DOI: 10.1080/17425247.2024.2394611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting. AREAS COVERED Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site. The application of antibodies and aptamers against the prevalent cell surface receptors is a potent and ever-growing field. Moreover, immuno-liposomes and cancer vaccines as adjuvant chemotherapy are also amenable to favorable immune modulation. Combinational and multi-functional systems are also attractive in this regard. However, potentially active targeted liposomal drug delivery systems have a long path to clinical acceptance, chiefly due to cross-interference and biocompatibility affairs of the functionalized moieties. EXPERT OPINION Engineered liposomal formulations have to be designed based on tissue properties, including surface chemistry, charge, and microvasculature. In this paper, we aimed to investigate the updated targeted liposomal systems for common cancer therapy worldwide.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
2
|
Hamrangsekachaee M, Wen K, Yazdani N, Willits RK, Bencherif SA, Ebong EE. Endothelial glycocalyx sensitivity to chemical and mechanical sub-endothelial substrate properties. Front Bioeng Biotechnol 2023; 11:1250348. [PMID: 38026846 PMCID: PMC10643223 DOI: 10.3389/fbioe.2023.1250348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 μg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 μg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
| | - Narges Yazdani
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Rebecca K. Willits
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Sidi A. Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Eno E. Ebong
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Neuroscience Department, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Huang F. Research Progress of Nanomaterial Mechanics for Targeted Treatment of Muscle Strains in Sports Rehabilitation Training. Appl Bionics Biomech 2022; 2022:8931131. [PMID: 35465182 PMCID: PMC9023226 DOI: 10.1155/2022/8931131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
More and more people are beginning to recognize the important role of intelligent rehabilitation training equipment in rehabilitation treatment and continue to carry out related researches. The use of intelligent robot technology for rehabilitation treatment has been rapidly developed, and it has achieved rapid progress on a global scale. Especially in some developed countries, this field has also received corresponding attention in some developed cities in China in recent years. Mesoporous nanomaterials have unique physical, chemical, and biological properties. Mesoporous nanomaterials can be combined with chemotherapy drugs to minimize the harm caused by chemotherapy drugs to the human body and improve the therapeutic effect. As a result, the cure rate has been improved, and it has shown deep potential in breast cancer chemotherapy. Fifty breast cancer patients were selected as the research objects and randomly divided into a control group and an experimental group, each with 25 cases. The control group was treated with conventional chemotherapeutics, and the experimental group was treated with molecular targeted therapy to compare the treatment effects of the two groups. Studies have shown that the recurrence rate and the occurrence probability of complications in the experimental group are significantly lower than those in the control group. Molecular targeted therapy for breast cancer has obvious effects, which reduces the recurrence rate of complications or diseases, and is less toxic.
Collapse
Affiliation(s)
- Fengping Huang
- Department of Basic Courses, Shandong University of Science and Technology, Jinan, 250031 Shandong, China
| |
Collapse
|
4
|
Zheng B, Zhang P, Wang H, Wang J, Liu ZH, Zhang D. Advances in Research on Bladder Cancer Targeting Peptides: a Review. Cell Biochem Biophys 2021; 79:711-718. [PMID: 34468956 PMCID: PMC8558283 DOI: 10.1007/s12013-021-01019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 12/04/2022]
Abstract
Bladder cancer (Bca) is the second most common malignant tumor of the genitourinary system in Chinese male population with high potential of recurrence and progression. The overall prognosis has not been improved significantly for the past 30 years due to the lack of early theranostic technique. Currently the early theranostic technique for bladder cancer is mainly through the intravesical approach, but the clinical outcomes are poor due to the limited tumor-targeting efficiency. Therefore, the targeting peptides for bladder cancer provide possibility to advance intravesical theranostic technique. However, no systematic review has covered the wide use of the targeting peptides for intravesical theranostic techniques in bladder cancer. Herein, a summary of original researches introduces all aspects of the targeting peptides for bladder cancer, including the peptide screening, the targeting mechanism and its preclinical application.
Collapse
Affiliation(s)
- Bin Zheng
- Zhejiang Chinese Medical University, 310053, HangZhou, China
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Pu Zhang
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Heng Wang
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Jinxue Wang
- Handan Central hospital, 056001, Handan, China
| | - Zheng Hong Liu
- Zhejiang Chinese Medical University, 310053, HangZhou, China
| | - DaHong Zhang
- Zhejiang Chinese Medical University, 310053, HangZhou, China.
| |
Collapse
|
5
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fang W, Su D, Lu W, Wang N, Mao R, Chen Y, Ge K, Shen A, Hu R. Application and Future Prospect of Extracellular Matrix Targeted Nanomaterials in Tumor Theranostics. Curr Drug Targets 2021; 22:913-921. [PMID: 33504304 DOI: 10.2174/1389450122666210127100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Systemic chemotherapy and radiotherapy have been widely used in clinics for several decades, but their disadvantages, such as systemic cytotoxicity and severe side effects, are the biggest obstacle to maximum therapeutic efficacy. In recent years, the impact of extracellular matrix components in tumor progression has gained the attention of researchers, and with the rapid development of nanomaterials, extracellular matrix targeted nanomaterials have become a promising strategy in tumor theranostics. In this review, we will outline the recent and relevant examples of various tumor extracellular matrix targeted nanomaterials applied in tumor therapy and imaging. And we will discuss the challenges and prospects of nanomaterials for future tumor therapy.
Collapse
Affiliation(s)
- Wenyou Fang
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Nan Wang
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Rong Mao
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yuan Chen
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Kunkun Ge
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rongfeng Hu
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| |
Collapse
|
7
|
Samaddar S, Mazur J, Sargent J, Thompson DH. Immunostimulatory Response of RWFV Peptide-Targeted Lipid Nanoparticles on Bladder Tumor Associated Cells. ACS APPLIED BIO MATERIALS 2021; 4:3178-3188. [PMID: 35014405 PMCID: PMC11752680 DOI: 10.1021/acsabm.0c01572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bladder carcinoma is the most expensive tumor type to treat on a cost-per-patient basis from diagnosis to death. Treatment with Bacillus Calmette Guerin (BCG) instillation is the only approved immunotherapy in the clinic for the remission of superficial bladder carcinoma. Unfortunately, frequent relapses, high local morbidity, risk of systemic mycobacterial infection, and occasional supply chain interruptions limit the utility of BCG for bladder cancer treatment. It is well known that BCG utilizes an adhesin protein known as fibronectin attachment protein that possesses a crucial RWFV peptide sequence for binding to the bladder tumor microenvironment prior to the initiation of the immunotherapeutic response. We report a RWFV-targeted, pH-responsive stabilized lipid nucleic acid nanoparticle (LNP) vehicle for the effective delivery of an immunotherapeutic oligonucleotide, CpG, that is assembled using a glass microfluidic Chemtrix 3221 reactor. Our small-angle X-ray scattering studies revealed a layer-by-layer assembly of the oligonucleotides with a repeat distance of 6.04 nm within the LNP. Using flow cytometry to evaluate the different cell types found in the bladder tumor microenvironment, RWFV-targeted LNPs were found to attach specifically to fibronectin-secreting cells in culture during a 2 h incubation period. The trafficking and cellular fate of these targeted LNPs were revealed by confocal microscopy of RAW264.7 macrophages to enter the endocytotic pathway within 4 h post treatment. Importantly, control studies reveal that only the pH-sensitive LNP formulation is capable of efficiently releasing the payload within 12 h. As a result, the targeted pH-sensitive LNP resulted in higher expression levels of costimulatory molecules CD83, CD 86, and MHC II, while also inducing higher levels of TNF-α secretion from macrophages. These results demonstrate that RWFV-targeted, pH-sensitive LNP formulations are capable of maximum immunotherapeutic response, potentially making them a highly efficient, lower risk, and readily manufactured alternative to BCG immunotherapy.
Collapse
Affiliation(s)
- Shayak Samaddar
- Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Joshua Mazur
- Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | | | - David H. Thompson
- Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
8
|
Ho KW, Chen IJU, Cheng YA, Liao TY, Liu ES, Chen HJ, Lu YC, Su YC, Roffler SR, Huang BC, Liu HJ, Huang MY, Chen CY, Cheng TL. Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity. J Nanobiotechnology 2021; 19:16. [PMID: 33422061 PMCID: PMC7796588 DOI: 10.1186/s12951-020-00752-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor-targeted nanoparticles hold great promise as new tools for therapy of liquid cancers. Furthermore, the therapeutic efficacy of nanoparticles can be improved by enhancing the cancer cellular internalization. METHODS In this study, we developed a humanized bispecific antibody (BsAbs: CD20 Ab-mPEG scFv) which retains the clinical anti-CD20 whole antibody (Ofatumumab) and is fused with an anti-mPEG single chain antibody (scFv) that can target the systemic liquid tumor cells. This combination achieves the therapeutic function and simultaneously "grabs" Lipo-Dox® (PEGylated liposomal doxorubicin, PLD) to enhance the cellular internalization and anticancer activity of PLD. RESULTS We successfully constructed the CD20 Ab-mPEG scFv and proved that CD20 Ab-mPEG scFv can target CD20-expressing Raji cells and simultaneously grab PEGylated liposomal DiD increasing the internalization ability up to 60% in 24 h. We further showed that the combination of CD20 Ab-mPEG scFv and PLD successfully led to a ninefold increase in tumor cytotoxicity (LC50: 0.38 nM) compared to the CD20 Ab-DNS scFv and PLD (lC50: 3.45 nM) in vitro. Importantly, a combination of CD20 Ab-mPEG scFv and PLD had greater anti-liquid tumor efficacy (P = 0.0005) in Raji-bearing mice than CD20 Ab-DNS scFv and PLD. CONCLUSION Our results indicate that this "double-attack" strategy using CD20 Ab-mPEG scFv and PLD can retain the tumor targeting (first attack) and confer PLD tumor-selectivity (second attack) to enhance PLD internalization and improve therapeutic efficacy in liquid tumors.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-J U Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Molecular Medicine and Bioengineering, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Steve R Roffler
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bo-Cheng Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Imaging, Kaohsiung Medical University Hospital, Sanmin Dist, No.100, Tzyou 1st Rd, Kaohsiung, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Di Maida F, Scalici Gesolfo C, Tellini R, Mari A, Sanfilippo C, Lambertini L, Grosso AA, Carini M, Minervini A, Serretta V. Fibronectin urothelial gene expression as a new reliable biomarker for early detection of local toxicity secondary to adjuvant intravesical therapy for non-muscle invasive bladder cancer. Ther Adv Urol 2021; 13:1756287221995683. [PMID: 33717214 PMCID: PMC7923969 DOI: 10.1177/1756287221995683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A marker of urothelial damage could be helpful for early detection and monitoring of local toxicity due to intravesical therapy for non-muscle invasive bladder cancer (NMIBC). The aim of the study was to investigate the correlation between fibronectin (FN) gene expression in bladder washings and local toxicity secondary to adjuvant intravesical therapy. MATERIALS AND METHODS Patients undergoing adjuvant intravesical therapy for NMIBC and age-matched healthy patients were enrolled. Real time polymerase chain reaction was performed to analyze FN expression in bladder washings. Local toxicity was classified as: 0-1 mild (no medical therapy), 2 moderate (medical therapy and/or instillation postponed), 3 severe (discontinuation of therapy). RESULTS Seventy-two patients and 21 controls entered the study. A useful pellet was obtained in 58 patients and 18 controls. Intravesical Bacillus Calmette-Guerin (BCG), Epirubicin and Mitomycin C was offered to 69%, 13.8% and 17.2% of patients respectively. Compared with healthy controls (FN = 1.0 fold), overall median FN expression before adjuvant intravesical therapy was 1.73 fold [interquartile range (IQR) 0.8-2.3], while during therapy median FN expression increased to 3.41 (IQR: 1.6-6.1) fold. Considering 40 intermediate and high-risk patients undergoing intravesical BCG, median FN expression before adjuvant treatment was 1.92 [(IQR: 1.0-2.7) fold, increasing up to 4.1 (IQR: 1.9-6.6) during therapy. In more detail, FN increased during BCG therapy, showing a median expression of 4.22 (IQR: 2.2-5.5) and 6.16 (IQR: 2.6-8.7) fold in presence of grade 2 and 3 toxicity respectively, while remaining more or less stable in asymptomatic patients. After receiver operating characteristic curve analysis, FN value of 3.6 fold resulted, corresponding to 75% sensitivity and 69% specificity to predict grade 2-3 toxicity events (area under the curve 0.74, 95% confidence interval 0.63-0.85, p = 0.001). CONCLUSION Our study validated the correlation between FN expression and urothelial damage. BCG seems to induce a urothelial activation with FN overexpression during adjuvant intravesical therapy. Grade of toxicity was related to FN expression.
Collapse
Affiliation(s)
- Fabrizio Di Maida
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Largo Brambilla 3, San Luca Nuovo, Firenze 50134, Italy
| | - Cristina Scalici Gesolfo
- Department of Surgical, Oncological and Oral Sciences, Section of Urology, University of Palermo, Palermo, Sicilia, Italy
| | - Riccardo Tellini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Andrea Mari
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Chiara Sanfilippo
- Department of Statistics, University of Palermo, Palermo, Italy
- GSTU Foundation, Palermo, Italy
| | - Luca Lambertini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Antonio Andrea Grosso
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Marco Carini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Andrea Minervini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Vincenzo Serretta
- Department of Surgical, Oncological and Oral Sciences, Section of Urology, University of Palermo, Palermo, Sicilia, Italy
| |
Collapse
|
10
|
Yoon HY, Yang HM, Kim CH, Goo YT, Kang MJ, Lee S, Choi YW. Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opin Drug Deliv 2020; 17:1555-1572. [DOI: 10.1080/17425247.2020.1810016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ho Yub Yoon
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hee Mang Yang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Korea
| | | |
Collapse
|
11
|
Yu K, Liu M, Dai H, Huang X. Targeted drug delivery systems for bladder cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Samaddar S, Mazur J, Boehm D, Thompson DH. Development And In Vitro Characterization Of Bladder Tumor Cell Targeted Lipid-Coated Polyplex For Dual Delivery Of Plasmids And Small Molecules. Int J Nanomedicine 2019; 14:9547-9561. [PMID: 31824150 PMCID: PMC6900316 DOI: 10.2147/ijn.s225172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bladder cancer is the fourth most common cancer in men and eleventh most common in women. Combination therapy using a gene and chemotherapeutic drug is a potentially useful strategy for treating bladder cancer in cases where a synergistic benefit can be achieved successfully. This approach relies on developing drug combinations using carrier systems that can load both hydrophilic genes and hydrophobic drugs. Ideally, the formulation for carrier system should be free of traditional high shear techniques such as sonication and extrusion to reduce shear-induced nucleic acid strand breakage. Moreover, the system should be able to protect the nucleic acid from enzymatic attack and deliver it specifically to the tumor site. MATERIALS AND METHODS A dual payload carrier system that was formulated using a simple flow mixing technique to complex anionic plasmid (EGFP-NLS) using a cationic polymer (CD-PEI2.5kD) followed by coating of the polyplex using lipid membranes. The resulting lipid-coated polyplex (LCP) formulations are targeted to bladder cancer cells by employing a bacterial adhesive peptide sequence, RWFV, that targets the LCP to the tumor stroma for efficiently delivering reporter plasmid, EGFP-NLS and a model small molecule drug, pyrene, to the cancer cells. RESULTS Encapsulation efficiency of the peptide targeted carrier for the plasmid was 50% ± 0.4% and for pyrene it was 16% ± 0.4%. The ability of the targeted LCP to transfect murine bladder cancer cells was 4-fold higher than LCP bearing a scrambled peptide sequence. Fluorescence of cells due to pyrene delivery was highest after 4 hrs using targeted LCP. Finally, we loaded the peptide targeted LCP with anti-cancer agent, curcumin. The targeted formulation of curcumin resulted in only 45% viable cancer cells at a concentration of 5 µg/mL, whereas the empty and non-targeted formulations did not result any significant cell death. CONCLUSION These results demonstrate the specificity of the targeting peptide sequence in engaging tumor cells and the utility of the developed carrier platform to deliver a dual payload to bladder tumor cells.
Collapse
Affiliation(s)
- Shayak Samaddar
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| | - Joshua Mazur
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| | - Devin Boehm
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| | - David H Thompson
- Department of Chemistry, Purdue University, Bindley Bioscience Center, West Lafayette, Indiana47906, USA
| |
Collapse
|
13
|
Wang Y, Li Z, Lin Q, Wei Y, Wang J, Li Y, Yang R, Yuan Q. Highly Sensitive Detection of Bladder Cancer-Related miRNA in Urine Using Time-Gated Luminescent Biochip. ACS Sens 2019; 4:2124-2130. [PMID: 31313911 DOI: 10.1021/acssensors.9b00927] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detection of biomarkers in complex samples is a significant health plan strategy for medical diagnosis, therapy monitoring, and health management. However, high background noise resulting from impurities and other analytes in complex samples has hampered the improvement of detection sensitivity and accuracy. Herein, an ultralow background biochip based on time-gated luminescent probes supported by photonic crystals (PCs) was successfully developed for detection of bladder cancer (BC)-related miRNA biomarkers with high sensitivity and specificity in urine samples. Coupled with the time-gated luminescence of long-lifetime luminescence probes and the luminescence-enhanced capability of PCs, the short-lived autofluorescence can be efficiently removed; thus, the detection sensitivity will be significantly improved. Benefiting from these merits, a detection limit of 26.3 fM is achieved. Furthermore, the biochip exhibits excellent performance in urinary miRNA detection, and good recoveries are also obtained. The developed biochip possesses unique properties of ultralow background and luminescence enhancement, thus offering a suitable tool for the detection of BC-related miRNA in urine. With rational design of probe sequences, the biochip holds great potential for many other biomarkers in real patient samples, making it valuable in areas such as medical diagnosis and disease evaluation.
Collapse
Affiliation(s)
- Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qiaosong Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yurong Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yingxue Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry, Wuhan University, Wuhan 430072, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Xia Y, Xu C, Zhang X, Ning P, Wang Z, Tian J, Chen X. Liposome-based probes for molecular imaging: from basic research to the bedside. NANOSCALE 2019; 11:5822-5838. [PMID: 30888379 DOI: 10.1039/c9nr00207c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Molecular imaging is very important in disease diagnosis and prognosis. Liposomes are excellent carriers for different types of molecular imaging probes. In this work, we summarize current developments in liposome-based probes used for molecular imaging and their applications in image-guided drug delivery and tumour surgery, including computed tomography (CT), ultrasound imaging (USI), magnetic resonance imaging (MRI), positron emission tomography (PET), fluorescence imaging (FLI) and photoacoustic imaging (PAI). We also summarized liposome-based multimodal imaging probes and new targeting strategies for liposomes. This work will offer guidance for the design of liposome-based imaging probes for future clinical applications.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | | | | | |
Collapse
|