1
|
Sekar RP, Lawson JL, Wright ARE, McGrath C, Schadeck C, Kumar P, Tay JW, Dragavon J, Kumar R. Poly(l-glutamic acid) augments the transfection performance of lipophilic polycations by overcoming tradeoffs among cytotoxicity, pDNA delivery efficiency, and serum stability. RSC APPLIED POLYMERS 2024; 2:701-718. [PMID: 39035825 PMCID: PMC11255917 DOI: 10.1039/d4lp00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/27/2024] [Indexed: 07/23/2024]
Abstract
Polycations are scalable and affordable nanocarriers for delivering therapeutic nucleic acids. Yet, cationicity-dependent tradeoffs between nucleic acid delivery efficiency, cytotoxicity, and serum stability hinder clinical translation. Typically, the most efficient polycationic vehicles also tend to be the most toxic. For lipophilic polycations-which recruit hydrophobic interactions in addition to electrostatic interactions to bind and deliver nucleic acids-extensive chemical or architectural modifications sometimes fail to resolve intractable toxicity-efficiency tradeoffs. Here, we employ a facile post-synthetic polyplex surface modification strategy wherein poly(l-glutamic acid) (PGA) rescues toxicity, inhibits hemolysis, and prevents serum inhibition of lipophilic polycation-mediated plasmid (pDNA) delivery. Importantly, the sequence in which polycations, pDNA, and PGA are combined dictates pDNA conformations and spatial distribution. Circular dichroism spectroscopy reveals that PGA must be added last to polyplexes assembled from lipophilic polycations and pDNA; else, PGA will disrupt polycation-mediated pDNA condensation. Although PGA did not mitigate toxicity caused by hydrophilic PEI-based polycations, PGA tripled the population of transfected viable cells for lipophilic polycations. Non-specific adsorption of serum proteins abrogated pDNA delivery mediated by lipophilic polycations; however, PGA-coated polyplexes proved more serum-tolerant than uncoated polyplexes. Despite lower cellular uptake than uncoated polyplexes, PGA-coated polyplexes were imported into nuclei at higher rates. PGA also silenced the hemolytic activity of lipophilic polycations. Our work provides fundamental insights into how polyanionic coatings such as PGA transform intermolecular interactions between lipophilic polycations, nucleic acids, and serum proteins, and facilitate gentle yet efficient transgene delivery.
Collapse
Affiliation(s)
- Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines Golden CO 80401 USA
| | | | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines Golden CO 80401 USA
| | - Caleb McGrath
- Quantitative Biosciences and Engineering, Colorado School of Mines Golden CO 80401 USA
| | - Cesar Schadeck
- Materials Science, Colorado School of Mines Golden CO 80401 USA
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines Golden CO USA
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Joseph Dragavon
- BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Ramya Kumar
- Chemical and Biological Engineering, Colorado School of Mines Golden CO 80401 USA
| |
Collapse
|
2
|
Leyden MC, Oviedo F, Saxena S, Kumar R, Le N, Reineke TM. Synergistic Polymer Blending Informs Efficient Terpolymer Design and Machine Learning Discerns Performance Trends for pDNA Delivery. Bioconjug Chem 2024; 35:897-911. [PMID: 38924453 DOI: 10.1021/acs.bioconjchem.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Cationic polymers offer an alternative to viral vectors in nucleic acid delivery. However, the development of polymer vehicles capable of high transfection efficiency and minimal toxicity has remained elusive, and continued exploration of the vast design space is required. Traditional single polymer syntheses with large monomer bases are very time-intensive, limiting the speed at which new formulations are identified. In this work, we present an experimental method for the quick probing of the design space, utilizing a combinatorial set of 90 polymer blends, derived from 6 statistical copolymers, to deliver pDNA. This workflow facilitated rapid screening of polyplex compositions, successfully tailoring polyplex hydrophobicity, particle size, and payload binding affinity. This workflow identified blended polyplexes with high levels of transfection efficiency and cell viability relative to single copolymer controls and commercial JetPEI, indicating synergistic benefits from copolymer blending. Polyplex composition was coupled with biological outputs to guide the synthesis of single terpolymer vehicles, with high-performing polymers P10 and M20, providing superior transfection of HEK293T cells in serum-free and serum-containing media, respectively. Machine learning coupled with SHapley Additive exPlanations (SHAP) was used to identify polymer/polyplex attributes that most impact transfection efficiency, viability, and overall effective efficiency. Subsequent transfections on ARPE-19 and HDFn cells found that P10 and M20 were surpassed in performance by M10, contrasting with results in HEK293T cells. This cell type dependency reinforced the need to evaluate transfection conditions with multiple cell models to potentially identify moieties more beneficial to delivery in certain tissues. Overall, the workflow employed can be used to expedite the exploration of the polymer design space, bypassing extensive synthesis, and to develop improved polymer delivery vehicles more readily for nucleic acid therapies.
Collapse
Affiliation(s)
- Michael C Leyden
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Felipe Oviedo
- Nanite Inc., Boston, Massachusetts 02109, United States
| | - Sonashree Saxena
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ngoc Le
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Saify Nabiabad H, Amini M, Demirdas S. Specific delivering of RNAi using Spike's aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: A strong anti-Covid drug in a clinical case study. Chem Biol Drug Des 2022; 99:233-246. [PMID: 34714580 PMCID: PMC8653378 DOI: 10.1111/cbdd.13978] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD aptamer having KD values of 0.290 nm possessed good affinity. Based on molecular docking and efficacy prediction analysis, siRNA molecule was showed the best action. LNPs were appropriately functionalized by aptamer and contained RNAi molecules. Antiviral assay using q-PCR and ELISA demonstrated that LNP functionalized with 35 µm Apt and containing 30 nm RNAi/ml of cell culture had the best antiviral activity compared to other concentrations. Applied aptamer in the nanocarrier has two important functions. First, it can deliver the drug (RNAi) to the surface of epithelial cells. Second, by binding to the SARS-CoV-2 spike protein, it inhibits the virus entrance into cells. Our data reveal an interaction between the aptamer and the virus, and RNAi targeted the virus RNA. CT scan and the clinical laboratory tests in a clinical case study, a 36-year old man who presented with severe SARS-CoV-2, demonstrated that inhalation of 10 mg Apt-LNPs-RNAi nebulized/day for six days resulted in an improvement in consolidation and ground-glass opacity in lungs on the sixth day of treatment. Our findings suggest the treatment of SARS-CoV-2 infection through inhalation of Aptamer-LNPs-RNAi.
Collapse
Affiliation(s)
| | - Massoume Amini
- Department of BiotechnologyBu‐Ali Sina UniversityHamadanIran
| | - Serwet Demirdas
- Department of Clinical GeneticsErasmus Medical CentreRotterdamthe Netherlands
| |
Collapse
|
4
|
In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater 2020; 108:326-336. [PMID: 32160962 DOI: 10.1016/j.actbio.2020.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Gene delivery offers promising outcomes for functional recovery or regeneration of lost tissues at cellular and tissue levels. However, more efficient carriers are needed to safely and locally delivery of genetic materials. Herein, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexe (NC) platforms for bone tissue regeneration. pDNA encoding human bone morphogenesis protein-2 (BMP-2) was used as a gene of interest. Formation and fine-tuning of nanocomplexes (NCs) between pDNA and chitosan (CS) as carriers were performed using a micromixer platform. Flow characteristics were adjusted to tune mixing time and consequently size, zeta potential, and compactness of assembled NCs. Subsequently, NCs were immobilized on a nanofibrous Poly(ε-caprolactone) (PCL) scaffold functionalized with metalloprotease-sensitive peptide (MMP-sensitive). This construct can provide an environmental-sensitive and localized gene delivery platform. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) was studied using chemical and biological assays. The presented results converge to indicate a great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine. STATEMENT OF SIGNIFICANCE: In this study, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexes (NCs) platforms for bone tissue regeneration. We used pDNA encoding human bone morphogenesis protein-2 (BMP-2) as the gene of interest. Using micromixer platform nanocomplexes (NCs) between pDNA and chitosan (CS) were fabricated and optimized. NCs were immobilized on a nanofibrous polycaprolactone scaffold functionalized with metalloprotease-sensitive peptide. In vitro and in vivo assays confirmed the osteogenic differentiation of mesenchymal stem cells (MSCs). The obtained data indicated great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine.
Collapse
|
5
|
Li T, Huang L, Yang M. Lipid-based Vehicles for siRNA Delivery in Biomedical Field. Curr Pharm Biotechnol 2020; 21:3-22. [PMID: 31549951 DOI: 10.2174/1389201020666190924164152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic drugs have aroused much attention in the past twenty years. RNA interference (RNAi) offers novel insights into discovering potential gene functions and therapies targeting genetic diseases. Small interference RNA (siRNA), typically 21-23 nucleotides in length, can specifically degrade complementary mRNA. However, targeted delivery and controlled release of siRNA remain a great challenge. METHODS Different types of lipid-based delivery vehicles have been synthesized, such as liposomes, lipidoids, micelles, lipoplexes and lipid nanoparticles. These carriers commonly have a core-shell structure. For active targeting, ligands may be conjugated to the surface of lipid particles. RESULTS Lipid-based drug delivery vehicles can be utilized in anti-viral or anti-tumor therapies. They can also be used to tackle genetic diseases or discover novel druggable genes. CONCLUSION In this review, the structures of lipid-based vehicles and possible surface modifications are described, and applications of delivery vehicles in biomedical field are discussed.
Collapse
Affiliation(s)
- Tianzhong Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
6
|
Benner NL, McClellan RL, Turlington CR, Haabeth OAW, Waymouth RM, Wender PA. Oligo(serine ester) Charge-Altering Releasable Transporters: Organocatalytic Ring-Opening Polymerization and their Use for in Vitro and in Vivo mRNA Delivery. J Am Chem Soc 2019; 141:8416-8421. [PMID: 31083999 PMCID: PMC7209379 DOI: 10.1021/jacs.9b03154] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA technology is transforming life science research and medicine, but many applications are limited by the accessibility, cost, efficacy, and tolerability of delivery systems. Here we report the first members of a new class of dynamic RNA delivery vectors, oligo(serine ester)-based charge-altering releasable transporters (Ser-CARTs). Composed of lipid-containing oligocarbonates and cationic oligo(serine esters), Ser-CARTs are readily prepared (one flask) by a mild ring-opening polymerization using thiourea anions and, upon simple mixing with mRNA, readily form complexes that degrade to neutral serine-based products, efficiently releasing their mRNA cargo. mRNA/Ser-CART transfection efficiencies of >95% are achieved in vitro. Intramuscular or intravenous (iv) injections of mRNA/Ser-CARTs into living mice result in in vivo expression of a luciferase reporter protein, with spleen localization observed after iv injection.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rebecca L. McClellan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Ole A. W. Haabeth
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral Gene Delivery with Cationic Glycopolymers. Acc Chem Res 2019; 52:1347-1358. [PMID: 30993967 DOI: 10.1021/acs.accounts.8b00665] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of gene therapy, which aims to treat patients by modulating gene expression, has come to fruition and has landed several landmark FDA approvals. Most gene therapies currently rely on viral vectors to deliver nucleic acid cargo into cells, but there is significant interest in moving toward chemical-based methods, such as polymer-based vectors, due to their low cost, immunocompatibility, and tunability. The full potential of polymer-based delivery systems has yet to be realized, however, because most polymeric transfection reagents are either too inefficient or too toxic for use in the clinic. In this Account, we describe developments in carbohydrate-based cationic polymers, termed glycopolymers, for enhanced nonviral gene delivery. As ubiquitous components of biological systems, carbohydrates are a rich class of compounds that can be harnessed to improve the biocompatibility of non-native polymers, such as linear polyamines used for promoting transfection. Reineke et al. developed a new class of carbohydrate-based polymers called poly(glycoamidoamine)s (PGAAs) by step-growth polymerization of linear monosaccharides with linear ethyleneamines. These glycopolymers were shown to be both efficient and biocompatible transfection reagents. Systematic modifications of the structural components of the PGAA system revealed structure-activity relationships important to its function, including its ability to degrade in situ. Expanding upon the development of step-growth glycopolymers, monosaccharides, such as glucose, were functionalized as vinyl-based monomers for the formation of diblock copolymers via radical addition-fragmentation chain-transfer (RAFT) polymerization. Upon complexation with plasmid DNA, the glucose-containing block creates a hydrophilic shell that promotes colloidal stability as effectively as PEG functionalization. An N-acetyl-d-galactosamine variant of this diblock polymer yields colloidally stable particles that show increased receptor-mediated uptake by liver hepatocytes in vitro and promotes liver targeting in mice. Finally, the disaccharide trehalose was incorporated into polycationic structures using both step-growth and RAFT techniques. It was shown that these trehalose-based copolymers imparted increased colloidal stability and yielded plasmid and siRNA polyplexes that resist aggregation upon lyophilization and reconstitution in water. The aforementioned series of glycopolymers use carbohydrates to promote effective and safe delivery of nucleic acid cargo into a variety of human cells types by promoting vehicle degradation, tissue-targeting, colloidal stabilization, and stability toward lyophilization to extend shelf life. Work is currently underway to translate the use of glycopolymers for safe and efficient delivery of nucleic acid cargo for gene therapy and gene editing applications.
Collapse
Affiliation(s)
- Craig Van Bruggen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Sangsuwan R, Tachachartvanich P, Francis MB. Cytosolic Delivery of Proteins Using Amphiphilic Polymers with 2-Pyridinecarboxaldehyde Groups for Site-Selective Attachment. J Am Chem Soc 2019; 141:2376-2383. [DOI: 10.1021/jacs.8b10947] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Matthew B. Francis
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Benner NL, Near KE, Bachmann MH, Contag CH, Waymouth RM, Wender PA. Functional DNA Delivery Enabled by Lipid-Modified Charge-Altering Releasable Transporters (CARTs). Biomacromolecules 2018; 19:2812-2824. [PMID: 29727572 PMCID: PMC6542359 DOI: 10.1021/acs.biomac.8b00401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Safe and effective DNA delivery systems are required to enable or enhance clinical strategies and research involving gene therapy and DNA vaccinations. To address this delivery problem, a series of charge-altering releasable transporters (CARTs) with varied lipid content were prepared and evaluated for plasmid DNA (pDNA) delivery into cultured cells. These lipid-modified CART co-oligomers were synthesized in only two steps via sequential organocatalytic ring-opening polymerization of lipid-containing cyclic carbonate monomers and morpholinone monomers. Lipid variations of the CARTs substantially impacted the delivery efficiency of pDNA, with oleyl- and linoleyl-based CARTs showing enhanced performance relative to the commercial transfection agent Lipofectamine 2000 (L2000). The best-performing oleyl CART was carried forward to study stable luciferase transfection with a Sleeping Beauty ( SB) transposon system. The oleyl CART outperformed the L2000 positive control with respect to stable transfection efficiency. CART-pDNA complexes represent a new DNA delivery system for research and clinical applications.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Katherine E. Near
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael H. Bachmann
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
| | - Christopher H. Contag
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Borguet Y, Khan S, Noel A, Gunsten SP, Brody SL, Elsabahy M, Wooley KL. Development of Fully Degradable Phosphonium-Functionalized Amphiphilic Diblock Copolymers for Nucleic Acids Delivery. Biomacromolecules 2018; 19:1212-1222. [PMID: 29526096 PMCID: PMC5894060 DOI: 10.1021/acs.biomac.8b00069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/23/2018] [Indexed: 11/29/2022]
Abstract
To expand the range of functional polymer materials to include fully hydrolytically degradable systems that bear bioinspired phosphorus-containing linkages both along the backbone and as cationic side chain moieties for packaging and delivery of nucleic acids, phosphonium-functionalized polyphosphoester- block-poly(l-lactide) copolymers of various compositions were synthesized, fully characterized, and their self-assembly into nanoparticles were studied. First, an alkyne-functionalized polyphosphoester- block-poly(l-lactide) copolymer was synthesized via a one pot sequential ring opening polymerization of an alkyne-functionalized phospholane monomer, followed by the addition of l-lactide to grow the second block. Second, the alkynyl side groups of the polyphosphoester block were functionalized via photoinitiated thiol-yne radical addition of a phosphonium-functionalized free thiol. The polymers of varying phosphonium substitution degrees were self-assembled in aqueous buffers to afford formation of well-defined core-shell assemblies with an average size ranging between 30 and 50 nm, as determined by dynamic light scattering. Intracellular delivery of the nanoparticles and their effects on cell viability and capability at enhancing transfection efficiency of nucleic acids (e.g., siRNA) were investigated. Cell viability assays demonstrated limited toxicity of the assembly to RAW 264.7 mouse macrophages, except at high polymer concentrations, where the polymer of high degree of phosphonium functionalization induced relatively higher cytotoxicity. Transfection efficiency was strongly affected by the phosphonium-to-phosphate (P+/P-) ratios of the polymers and siRNA, respectively. The AllStars Hs Cell Death siRNA complexed to the various copolymers at a P+/P- ratio of 10:1 induced comparable cell death to Lipofectamine. These fully degradable nanoparticles might provide biocompatible nanocarriers for therapeutic nucleic acid delivery.
Collapse
Affiliation(s)
- Yannick
P. Borguet
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Sarosh Khan
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Amandine Noel
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Sean P. Gunsten
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
| | - Steven L. Brody
- Department
of Medicine, Washington University, St. Louis, Missouri 63110, United States
- Department
of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Mahmoud Elsabahy
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
- Department
of Pharmaceutics, Faculty of Pharmacy, Assiut International Center
of Nanomedicine, Alrajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Karen L. Wooley
- Departments
of Chemistry, Chemical Engineering, and Materials Science & Engineering,
and the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
11
|
Mandal H, Katiyar SS, Swami R, Kushwah V, Katare PB, Kumar Meka A, Banerjee SK, Popat A, Jain S. ε-Poly-l-Lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J Pharm 2018; 542:142-152. [PMID: 29550568 DOI: 10.1016/j.ijpharm.2018.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 11/27/2022]
Abstract
The present work addresses the development and characterization of ε-Poly-l-Lysine/pDNA polyplexes and evaluation for their improved transfection efficacy and safety as compared to polyplexes prepared using Poly-l-Lysine and SuperFect®. Self-assembling polyplexes were prepared by varying the N/P ratio to obtain the optimum size, a net positive zeta potential and gel retardation. The stability in presence of DNase I and serum was assured using gel retardation assay. Their appreciable uptake in MCF-7 and 3.5, 3.79 and 4.79-fold higher transfection compared to PLL/pDNA polyplexes and 1.60, 1.53 and 1.79-fold higher transfection compared to SuperFect®/pDNA polyplexes in MCF-7, HeLa and HEK-293 cell lines respectively, affirmed the enhanced transfection of ε-PLL/pDNA polyplexes which was well supported with in vivo transfection and gene expression studies. The <8% in vitro hemolysis and >98% viability of MCF-7, HeLa and HEK-293 cells in presence of ε-PLL/pDNA polyplexes addressed their safety, which was also ensured using in vivo toxicity studies, where hemocompatibility, unaltered levels of biochemical markers and histology of vital organs confirmed ε-PLL to be an effective and safer alternative for non-viral genetic vectors.
Collapse
Affiliation(s)
- Haimanti Mandal
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Rajan Swami
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India
| | - Parmeshwar B Katare
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Anand Kumar Meka
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sanjay K Banerjee
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Amirali Popat
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67 Mohali, Punjab, India.
| |
Collapse
|
12
|
Maiti B, Kamra M, Karande AA, Bhattacharya S. Transfection efficiencies of α-tocopherylated cationic gemini lipids with hydroxyethyl bearing headgroups under high serum conditions. Org Biomol Chem 2018; 16:1983-1993. [DOI: 10.1039/c7ob02835k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liposomal gene transfection under high serum conditions.
Collapse
Affiliation(s)
- Bappa Maiti
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
- Director's Research Unit
| | - Mohini Kamra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
- Director's Research Unit
| |
Collapse
|