1
|
Fan X, Jiang K, Zhao Y, Lee BTK, Geng F, Brelen ME, Lu W, Wei G. Peptide-Bound Aflibercept Eye Drops for Treatment of Neovascular Age-Related Macular Degeneration in Nonhuman Primates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410744. [PMID: 39888276 PMCID: PMC11923875 DOI: 10.1002/advs.202410744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Indexed: 02/01/2025]
Abstract
The advent of biomacromolecules antagonizing vascular endothelial growth factor (VEGF) has revolutionized the treatment of neovascular age-related macular degeneration (nAMD). However, frequent intravitreal injections of these biomacromolecules impose an enormous burden on patients and create a massive workload for healthcare providers. This causes patients to abandon therapy, ultimately leading to progressive and irreversible vision loss. In order to address this unmet clinical need, a noninvasive treatment for nAMD is developed. An optimized cell-penetrating peptide derivative, bxyPenetratin (bxyWP), is used to non-covalently complex with the anti-VEGF protein aflibercept (AFL) via reversible hydrophobic interaction. The interaction is crucial for AFL delivery, neither impairing the affinity of AFL to pathological VEGF, nor being interfered by endogenous proteins in tear fluids. AFL/bxyWP eye drops exhibit prolonged retention on the eye and excellent absorption into the posterior ocular segment following topical administration, with significant drug distribution to the retina and choroid. In a laser-induced choroidal neovascularization model on cynomolgus monkeys, AFL/bxyWP eye drops efficiently reduce lesion size and leakage comparable to conventional intravitreal injection of AFL. These results suggest that AFL/bxyWP eye drops are feasible self-administered treatment for neovascular retinal diseases and potentially become a substitute for intravitreal injections.
Collapse
Affiliation(s)
- Xingyan Fan
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
| | - Kuan Jiang
- Eye Institute and Department of OphthalmologyEye and ENT HospitalFudan UniversityShanghai200031China
| | - Yongqian Zhao
- Alephoson Biopharmaceuticals LimitedHong Kong SAR999077China
| | - Benjamin TK Lee
- Alephoson Biopharmaceuticals LimitedHong Kong SAR999077China
| | - Feiyang Geng
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
| | - Marten E Brelen
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong Kong SAR999077China
| | - Weiyue Lu
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
- Quzhou Fudan InstituteQuzhou324003China
| | - Gang Wei
- Department of PharmaceuticsSchool of PharmacyFudan University & Key Laboratory of Smart Drug Delivery (Fudan University)Ministry of EducationShanghai201203China
- Quzhou Fudan InstituteQuzhou324003China
- Shanghai Engineering Research Center of ImmunoTherapeuticsShanghai201203China
| |
Collapse
|
2
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Koch KC, Bizmark TM, Tew GN. Alcohol-containing protein transduction domain mimics. J Control Release 2024; 365:950-956. [PMID: 38065415 DOI: 10.1016/j.jconrel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
The application and design of protein transduction domains (PTDs) and protein transduction domain mimics (PTDMs) have revolutionized the field of biomacromolecule delivery. Our group has previously synthesized block copolymer PTDMs with well-defined hydrophobic and cationic blocks via ring-opening metathesis polymerization (ROMP). We have optimized the balance of hydrophobicity and cationic density to intracellularly deliver model proteins, active proteins, and antibodies. Despite the presence of serine, threonine, and tyrosine in naturally occurring PTDs, synthetic analogs have yet to be studied in PTDMs. In our present work, we introduce different alcohol groups to our PTDM structures as a new design parameter. A library of nine novel PTDMs were synthesized to incorporate alcohol groups of varying structures and evaluated based on their ability to intracellularly deliver fluorescently labeled antibodies. One PTDM in this novel library, named PTDM4, incorporates alcohol groups in both the hydrophobic and cationic blocks and was found to be the best performing PTDM with almost twice the median fluorescence intensity of the delivered antibody and half the cationic density compared to our positive control, a PTDM thoroughly studied by our group. PTDM4 was further studied by intracellularly delivering the active enzyme, TAT-Cre Recombinase. The activity of TAT-Cre Recombinase delivered by PTDM4 was comparable to that of the positive control, again with half the cationic density. This study is one of the first to examine the effects of alcohol groups on intracellular antibody and active enzyme delivery.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Tamara M Bizmark
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
4
|
Yi C, Xie F, Xu X, Xiao D, Zhou X, Cheng M. Guanidine-modified albumin-MMAE conjugates with enhanced endocytosis ability. Drug Deliv 2023; 30:2219433. [PMID: 37434438 PMCID: PMC10339779 DOI: 10.1080/10717544.2023.2219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/13/2023] Open
Abstract
Aiming to address the insufficient endocytosis ability of traditional albumin drug conjugates, this paper reports elegant guanidine modification to improve efficacy for the first time. A series of modified albumin drug conjugates were designed and synthesized with different structures, including guanidine (GA), biguanides (BGA) and phenyl (BA), and different quantities of modifications. Then, the endocytosis ability and in vitro/vivo potency of albumin drug conjugates were systematically studied. Finally, a preferred conjugate A4 was screened, which contained 15 BGA modifications. Conjugate A4 maintains spatial stability similar to that of the unmodified conjugate AVM and could significantly enhance endocytosis ability (p*** = 0.0009) compared with the unmodified conjugate AVM. Additionally, the in vitro potency of conjugate A4 (EC50 = 71.78 nmol in SKOV3 cells) was greatly enhanced (approximately 4 times) compared with that of the unmodified conjugate AVM (EC50 = 286.00 nmol in SKOV3 cells). The in vivo efficacy of conjugate A4 completely eliminated 50% of tumors at 33 mg/kg, which was significantly better than the efficacy of conjugate AVM at the same dose (P** = 0.0026). In addition, theranostic albumin drug conjugate A8 was designed to intuitively realize drug release and maintain antitumor activity similar to conjugate A4. In summary, the guanidine modification strategy could provide new ideas for the development of new generational albumin drug conjugates.
Collapse
Affiliation(s)
- Ce Yi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Maosheng Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Ting JM, Tamayo-Mendoza T, Petersen SR, Van Reet J, Ahmed UA, Snell NJ, Fisher JD, Stern M, Oviedo F. Frontiers in nonviral delivery of small molecule and genetic drugs, driven by polymer chemistry and machine learning for materials informatics. Chem Commun (Camb) 2023; 59:14197-14209. [PMID: 37955165 DOI: 10.1039/d3cc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Materials informatics (MI) has immense potential to accelerate the pace of innovation and new product development in biotechnology. Close collaborations between skilled physical and life scientists with data scientists are being established in pursuit of leveraging MI tools in automation and artificial intelligence (AI) to predict material properties in vitro and in vivo. However, the scarcity of large, standardized, and labeled materials data for connecting structure-function relationships represents one of the largest hurdles to overcome. In this Highlight, focus is brought to emerging developments in polymer-based therapeutic delivery platforms, where teams generate large experimental datasets around specific therapeutics and successfully establish a design-to-deployment cycle of specialized nanocarriers. Three select collaborations demonstrate how custom-built polymers protect and deliver small molecules, nucleic acids, and proteins, representing ideal use-cases for machine learning to understand how molecular-level interactions impact drug stabilization and release. We conclude with our perspectives on how MI innovations in automation efficiencies and digitalization of data-coupled with fundamental insight and creativity from the polymer science community-can accelerate translation of more gene therapies into lifesaving medicines.
Collapse
|
6
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
7
|
Ren L, Jiang L, Ren Q, Lv J, Zhu L, Cheng Y. A light-activated polymer with excellent serum tolerance for intracellular protein delivery. Chem Sci 2023; 14:2046-2053. [PMID: 36845943 PMCID: PMC9945510 DOI: 10.1039/d2sc05848k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
The design of efficient materials for intracellular protein delivery has attracted great interest in recent years; however, most current materials for this purpose are limited by poor serum stability due to the early release of cargoes triggered by abundant serum proteins. Here, we propose a light-activated crosslinking (LAC) strategy to prepare efficient polymers with excellent serum tolerance for intracellular protein delivery. A cationic dendrimer engineered with photoactivatable O-nitrobenzene moieties co-assembles with cargo proteins via ionic interactions, followed by light activation to yield aldehyde groups on the dendrimer and the formation of imine bonds with cargo proteins. The light-activated complexes show high stability in buffer and serum solutions, but dis-assemble under low pH conditions. As a result, the polymer successfully delivers cargo proteins green fluorescent protein and β-galactosidase into cells with maintained bioactivity even in the presence of 50% serum. The LAC strategy proposed in this study provides a new insight to improve the serum stability of polymers for intracellular protein delivery.
Collapse
Affiliation(s)
- Lanfang Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200240 China
| | - Qianyi Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200240 China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University Shanghai 200241 China
| |
Collapse
|
8
|
Davis HC, Pan X, Kirsch ZJ, Vachet RW, Tew GN. Covalent Labeling-Mass Spectrometry Provides a Molecular Understanding of Noncovalent Polymer-Protein Complexation. ACS Biomater Sci Eng 2022; 8:2489-2499. [PMID: 35608244 PMCID: PMC9205173 DOI: 10.1021/acsbiomaterials.2c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of functional proteins to the intracellular space offers tremendous advantages for the development of new therapeutics but is limited by the passage of these large polar biomacromolecules through the cell membrane. Noncovalent polymer-protein binding that is driven by strong carrier-cargo interactions, including electrostatics and hydrophobicity, has previously been explored in the context of delivery of functional proteins. Appropriately designed polymer-based carriers can take advantage of the heterogeneous surface of protein cargoes, where multiple types of physical binding interactions with polymers can occur. Traditional methods of assessing polymer-protein binding, including dynamic light scattering, circular dichroism spectroscopy, and fluorescence-based assays, are useful in the study of new polymer-based carriers but face a number of limitations. We implement for the first time the method of covalent labeling-mass spectrometry (CL-MS) to probe intermolecular surface interactions within noncovalent polymer-protein complexes. We demonstrate the utility of CL-MS for establishing binding of an amphiphilic block copolymer to negatively charged and hydrophobic surface patches of a model protein, superfolder green fluorescent protein (sfGFP), using diethylpyrocarbonate as a pseudo-specific labeling reagent. In addition, we utilize this method to explore differences at the intermolecular surface as the ratio of polymer to protein increases, particularly in the context of defining effective protein delivery regimes. By promoting an understanding of the intermolecular interactions in polymer-protein binding and identifying sites where polymers bind to protein surfaces, noncovalent polymer carriers can be more effectively designed for protein delivery applications.
Collapse
Affiliation(s)
- Hazel C Davis
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiao Pan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zachary J Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Barrios A, Estrada M, Moon JH. Carbamoylated Guanidine-Containing Polymers for Non-Covalent Functional Protein Delivery in Serum-Containing Media. Angew Chem Int Ed Engl 2022; 61:e202116722. [PMID: 34995405 DOI: 10.1002/anie.202116722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Despite the high potential of controlling cellular processes and treating various diseases by intracellularly delivered proteins, current delivery systems exhibit poor efficiency due to poor serum stability, cellular entry, and cytosolic availability of proteins. Here, we report a novel functional group, phenyl carbamoylated guanidine (Ph-CG), that greatly enhances the delivery efficiency to various types of cells. Owing to the substantially lowered pKa , the hydrophobic Ph-CG offers optimized inter-macromolecular interactions via enhanced hydrogen-bonding and hydrophobic interactions. The coplanarity of Ph-CG also leads to the better intracellular entry of protein complexes. Intracellularly delivered apoptosis-inducing enzymes and antibodies significantly induce cell viability inhibitions in a serum-containing medium. The newly developed Ph-CG can be introduced to various existing carriers, leading to the realization of future therapeutic protein delivery.
Collapse
Affiliation(s)
- Alfonso Barrios
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institutes, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Marilen Estrada
- Department of Natural and Applied Sciences, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Joong Ho Moon
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institutes, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| |
Collapse
|
10
|
Barrios A, Estrada M, Moon JH. Carbamoylated Guanidine‐Containing Polymers for Non‐Covalent Functional Protein Delivery in Serum‐Containing Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfonso Barrios
- Florida International University chemistry and biochemistry UNITED STATES
| | - Marilen Estrada
- Florida International University Natural and Applied Sciences UNITED STATES
| | - Joong Ho Moon
- Florida International University Chemistry and Biochemistry 11200 SW 8th St.MMC CP311 33199 Miami UNITED STATES
| |
Collapse
|
11
|
Hango CR, Davis HC, Uddin EA, Minter LM, Tew GN. Increased block copolymer length improves intracellular availability of protein cargo. Polym Chem 2022. [DOI: 10.1039/d2py00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic protein transduction domain mimics (PTDMs) of various lengths were used for protein delivery in Jurkat T cells. Although longer PTDMs facilitated greater cargo internalization, shorter PTDMs yielded greater cargo activity.
Collapse
Affiliation(s)
- Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Hazel C. Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Esha A. Uddin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
12
|
Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-Sensitive Protein Nanogels Enhance Uptake of Model and Tumor Lysate Antigens In Vitro by Mouse- and Human-Derived Dendritic Cells. ACS APPLIED BIO MATERIALS 2021; 4:8291-8300. [PMID: 35005925 DOI: 10.1021/acsabm.1c00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides and proteins represent an emerging class of powerful therapeutics. Peptide and protein nanogels are attractive carriers for the transport and delivery of biologically active peptides and proteins because they allow essentially quantitative encapsulation of these biologics. One interesting field of use of peptide and protein nanogels is the transport of antigens and adjuvants in cancer immunotherapy. This study demonstrates the use of reduction-sensitive protein nanogels for the delivery of ovalbumin and oxidized tumor lysate-based antigens to mouse and human-donor-derived dendritic cells. Challenging mouse-derived and human dendritic cells with reduction-sensitive ovalbumin nanogels was found to significantly enhance antigen uptake as compared to the use of the corresponding free protein antigen. The experiments with mouse-derived dendritic cells further showed that the administration of ovalbumin in the form of reduction-sensitive nanogels enhanced dendritic cell maturation as well as the presentation of the SIINFEKL epitope as compared to experiments that use free ovalbumin. In addition to ovalbumin as a model antigen, the feasibility of reduction-sensitive nanogels was also demonstrated for the delivery of oxidized, whole tumor lysate-based cancer antigens. In experiments with dendritic cells harvested from human donors, dendritic cell uptake of the oxidized tumor lysate antigen was significantly enhanced in experiments that used oxidized tumor lysate nanogels as compared to the free antigen.
Collapse
Affiliation(s)
- Cristiana Berti
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Alice Boarino
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lisa P E Bader
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Harm-Anton Klok
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Davis HC, Posey ND, Tew GN. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics. Biomacromolecules 2021; 23:57-66. [PMID: 34879198 DOI: 10.1021/acs.biomac.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is significant potential in exploiting antibody specificity to develop new therapeutic treatments. However, intracellular protein delivery is a paramount challenge because of the difficulty in transporting large, polar molecules across cell membranes. Cell-penetrating peptide mimics (CPPMs) are synthetic polymers that are versatile materials for intracellular delivery of biological molecules, including nucleic acids and proteins, with superior performance compared to their natural counterparts and commercially available peptide-based reagents. Studies have demonstrated that noncovalent complexation with these synthetic carriers is necessary for the delivery of proteins, but the fundamental interactions dominating CPPM-protein complexation are not well understood. Beyond these interactions, the mechanism of release for many noncovalent carriers is not well established. Herein, interactions expected to be critical in CPPM-protein binding and unbinding were explored, including hydrogen bonding, electrostatics, and hydrophobic interactions. Despite the guanidinium-rich functionality of these polymeric carriers, hydrogen bonding was shown not to be a dominant interaction in CPPM-protein binding. Fluorescence quenching assays were used to decouple the effect of electrostatic and hydrophobic interactions between amphiphilic CPPMs and proteins. Furthermore, by conducting competition assays with other proteins, unbinding of protein cargoes from CPPM-protein complexes was demonstrated and provided insight into mechanisms of protein release. This work offers understanding toward the role of carrier and cargo binding and unbinding in intracellular outcomes. In turn, an improved fundamental understanding of noncovalent polymer-protein complexation will enable more effective methods for intracellular protein delivery.
Collapse
Affiliation(s)
- Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Honda Y, Nomoto T, Matsui M, Takemoto H, Miura Y, Nishiyama N. Sequentially Self-Assembled Nanoreactor Comprising Tannic Acid and Phenylboronic Acid-Conjugated Polymers Inducing Tumor-Selective Enzymatic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54850-54859. [PMID: 34756033 DOI: 10.1021/acsami.1c20188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of enzyme delivery systems, which can control enzymatic activity at a target site, is important for efficient enzyme-prodrug therapy/diagnosis. Herein we report a facile technique to construct a systemically applicable β-galactosidase (β-Gal)-loaded ternary complex comprising tannic acid (TA) and phenylboronic acid-conjugated polymers through sequential self-assembly in aqueous solution. At physiological conditions, the ternary complex exhibited a hydrodynamic diameter of ∼40 nm and protected the loaded β-Gal from unfavorable degradation by proteinase. Upon cellular internalization, the ternary complex recovered β-Gal activity by releasing the loaded β-Gal. The intravenously injected ternary complex thereby delivered β-Gal to the target tumor in a subcutaneous tumor model and exerted enhanced and selective enzymatic activity at the tumor site. Sequential self-assembly with TA and phenylboronic acid-conjugated polymers may offer a novel approach for enzyme-prodrug theragnosis.
Collapse
Affiliation(s)
- Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
15
|
Hango CR, Backlund CM, Davis HC, Posey ND, Minter LM, Tew GN. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity. Biomacromolecules 2021; 22:2850-2863. [PMID: 34156837 DOI: 10.1021/acs.biomac.1c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.
Collapse
Affiliation(s)
- Christopher R Hango
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
16
|
Zhu T, Shi L, Ma C, Xu L, Yang J, Zhou G, Zhu X, Shen L. Fluorinated chitosan-mediated intracellular catalase delivery for enhanced photodynamic therapy of oral cancer. Biomater Sci 2021; 9:658-662. [PMID: 33463639 DOI: 10.1039/d0bm01898h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A pH-responsive fluorinated chitosan-chlorin e6 (FC-Ce6) was employed here for the intracellular delivery of catalase to relieve the hypoxic micro-environment. Upon simple mixing, FC-Ce6 and catalase co-assemble to form stable nanoparticles, which show a greatly improved cross-membrane penetration capacity compared with catalase alone or nonfluorinated CS-Ce6/catalase nanoparticles. Under catalase catalysis, a high concentration of intracellular H2O2 can be transformed into O2. Upon irradiation, due to the continuous formation of cytotoxic singlet oxygen (1O2), our nanoparticles showed superior anti-cancer activity in contrast to free Ce6 and nonfluorinated CS-Ce6/catalase nanoparticles. Our study proposes an effective intracellular catalase delivery system to overcome hypoxia for enhanced PDT against oral cancer.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuan Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoyu Zhou
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Shen
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
17
|
Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery. Biomaterials 2020; 268:120600. [PMID: 33360507 DOI: 10.1016/j.biomaterials.2020.120600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/14/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a hallmark of the pathophysiogenesis of retinal ischemia. The direct delivery of antioxidant enzymes such as superoxide dismutase (SOD) into retinal cells provides a promising option for the down-regulation of oxidative stress in retinal ischemia, however, efficient intracellular protein delivery remains a major challenge for this application. Here, a boronic acid-rich polymer was used for the intracellular delivery of SOD both in vitro and in vivo. The polymer assembled with SOD into uniform nanoparticles with high binding affinity, and transported the cargo protein into several cell lines with maintained bioactivity and low cytotoxicity. We investigated the intraocular biodistribution, therapeutic efficacy and safety of the SOD nanoformulation in a retinal ischemia/reperfusion (I/R) injury model. After intravitreal injection, the nanoparticles rapidly diffused through the vitreous and penetrated into retinal ganglion cells (RGCs). Compared to free SOD, the nanoformulation exhibited much enhanced therapeutic efficacy with reduced RGC apoptosis and protected retinal function. Enzymatic results confirmed that the SOD nanoformulation reduced malondialdehyde expression and increased glutathione level in the ocular tissues, and thereby down-regulated oxidative stress and prevented RGC loss. Overall, this work offers a new therapeutic option for the treatment of retinal ischemic disorders by direct delivery of antioxidant proteins.
Collapse
|
18
|
Lv J, Wang C, Li H, Li Z, Fan Q, Zhang Y, Li Y, Wang H, Cheng Y. Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both In Vitro and In Vivo. NANO LETTERS 2020; 20:8600-8607. [PMID: 33155820 DOI: 10.1021/acs.nanolett.0c03287] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of stimuli-responsive polymers for cytosolic protein delivery with robust efficiency is of great importance but remains a challenging task. Here, we reported a bioreducible and amphiphilic dendrimer bearing a fluoroalkyl tail for this purpose. The fluorolipid was conjugated to the focal point of a cysteamine-cored polyamidoamine dendrimer via disulfide bond, while phenylboronic acid moieties were decorated on dendrimer surface for efficient protein binding. The yielding polymer showed high protein binding capability and complex stability and could efficiently release the cargo proteins in a glutathione-responsive manner. The designed polymer was effective in the delivery of various membrane-impermeable proteins into living cells with reserved bioactivities. In addition, the polymer efficiently delivered a toxin protein saporin into 4T1 breast cancer cells and inhibited the tumor growth in vivo after intravenous injection. The developed polymer in this study is a promising vector for the delivery of membrane-impermeable proteins to treat various diseases.
Collapse
Affiliation(s)
- Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changping Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongru Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qianqian Fan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
19
|
Lv J, Tan E, Wang Y, Fan Q, Yu J, Cheng Y. Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery. J Control Release 2020; 320:412-420. [DOI: 10.1016/j.jconrel.2020.01.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
|
20
|
Zhang S, Cheng Y. Boronic acid-engineered gold nanoparticles for cytosolic protein delivery. Biomater Sci 2020; 8:3741-3750. [DOI: 10.1039/d0bm00679c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Boronic acid-engineered gold nanoparticles for effective cytosolic protein delivery with the help of hypertonicity.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology
- School of Molecular Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology
- School of Molecular Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
21
|
Backlund CM, Hango CR, Minter LM, Tew GN. Protein and Antibody Delivery into Difficult-to-Transfect Cells by Polymeric Peptide Mimics. ACS APPLIED BIO MATERIALS 2019; 3:180-185. [DOI: 10.1021/acsabm.9b00876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Coralie M. Backlund
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
22
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
23
|
Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. SCIENCE ADVANCES 2019; 5:eaaw8922. [PMID: 31206027 PMCID: PMC6561739 DOI: 10.1126/sciadv.aaw8922] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
Cytosolic protein delivery is of central importance for the development of protein-based biotechnologies and therapeutics; however, efficient intracellular delivery of native proteins remains a challenge. Here, we reported a boronic acid-rich dendrimer with unprecedented efficiency for cytosolic delivery of native proteins. The dendrimer could bind with both negatively and positively charged proteins and efficiently delivered 13 cargo proteins into the cytosol of living cells. All the delivered proteins kept their bioactivities after cytosolic delivery. The dendrimer ensures efficient intracellular delivery of Cas9 protein into various cell lines and showed high efficiency in CRISPR-Cas9 genome editing. The rationally designed boronic acid-rich dendrimer permits the development of an efficient platform with high generality for the delivery of native proteins.
Collapse
Affiliation(s)
- Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Tao Wan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Song Zhang
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
24
|
Protein Transduction Domain Mimic (PTDM) Self-Assembly? Polymers (Basel) 2018; 10:polym10091039. [PMID: 30960964 PMCID: PMC6403535 DOI: 10.3390/polym10091039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
Intracellular protein delivery is an invaluable tool for biomedical research, as it enables fundamental studies of cellular processes and creates opportunities for novel therapeutic development. Protein delivery reagents such as cell penetration peptides (CPPs) and protein transduction domains (PTDs) are frequently used to facilitate protein delivery. Herein, synthetic polymer mimics of PTDs, called PTDMs, were studied for their ability to self-assemble in aqueous media as it was not known whether self-assembly plays a role in the protein binding and delivery process. The results obtained from interfacial tensiometry (IFT), transmission electron microscopy (TEM), transmittance assays (%T), and dynamic light scattering (DLS) indicated that PTDMs do not readily aggregate or self-assemble at application-relevant time scales and concentrations. However, additional DLS experiments were used to confirm that the presence of protein is required to induce the formation of PTDM-protein complexes and that PTDMs likely bind as single chains.
Collapse
|
25
|
Posey ND, Tew GN. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery. Chem Asian J 2018; 13:3351-3365. [DOI: 10.1002/asia.201800849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas D. Posey
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Gregory N. Tew
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
- Department of Veterinary and Animal Sciences; University of Massachusetts Amherst; Amherst MA 01003 USA
- Molecular and Cellular Biology Program; University of Massachusetts Amherst; Amherst MA 01003 USA
| |
Collapse
|