1
|
Li Y, Du B, Yu L, Luo H, Rong H, Gao X, Yin J. Strategies and challenges of cytosolic delivery of proteins. J Drug Target 2025; 33:837-852. [PMID: 39862226 DOI: 10.1080/1061186x.2025.2458616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The cytosolic delivery of therapeutic proteins represents a promising strategy for addressing diseases caused by protein dysfunction. Despite significant advances, efficient delivery remains challenging due to barriers such as cell membrane impermeability, endosomal sequestration and protein instability. This review summarises recent progress in protein delivery systems, including physical, chemical and biological approaches, with a particular focus on strategies that enhance endosomal escape and targeting specificity. We further discuss the clinical translatability of these approaches and propose future directions for improving delivery efficiency and safety, ultimately unlocking the therapeutic potential of intracellular proteins.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Baojie Du
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lichao Yu
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Luo
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiangdong Gao
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- School of Life Science and Technology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Liu Y, Li F, Lyu Y, Wang F, Lee LTO, He S, Guo Z, Li J. A Semiconducting Polymer NanoCRISPR for Near-Infrared Photoactivatable Gene Editing and Cancer Gene Therapy. NANO LETTERS 2025; 25:4518-4525. [PMID: 40053823 DOI: 10.1021/acs.nanolett.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) gene editing has poor efficacy and off-target side effect concerns. We herein report a semiconducting polymer (SP)-based nanoCRISPR system to improve CRISPR delivery efficacy and allow for near-infrared (NIR) photoactivatable gene editing for cancer therapy. An amphiphilic SP acts as a photothermal converter, and its backbone is grafted with single-stranded deoxyribonucleic acid (DNA), which enables hybridization with single guide ribonucleic acid (sgRNA) via complementary base pairing to form sgRNA/SP-DNA. This sgRNA/SP-DNA nanosystem (nanoCRISPR) can effectively deliver sgRNA into cells and generate heat under NIR laser irradiation via the photothermal effect. The localized heat triggers the dissociation of single-stranded DNA and sgRNA to control the release of sgRNA, thereby achieving precise regulation of CRISPR activity. This NIR photoactivatable gene editing technology is able to precisely regulate the expression of green fluorescent protein (GFP) and polo-like kinase 1 (PLK1) gene for precision gene therapy.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Lyu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengshuo Wang
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong Guo
- Center for Biological Science and Technology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jingchao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Lee H, Rho WY, Kim YH, Chang H, Jun BH. CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations. Molecules 2025; 30:542. [PMID: 39942646 PMCID: PMC11820414 DOI: 10.3390/molecules30030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR-Cas9 technology, one of the groundbreaking genome editing methods for addressing genetic disorders, has emerged as a powerful, precise, and efficient tool. However, its clinical translation remains hindered by challenges in delivery efficiency and targeting specificity. This review provides a comprehensive analysis of the structural features, advantages, and potential applications of various non-viral and stimuli-responsive systems, examining recent progress to emphasize the potential to address these limitations and advance CRISPR-Cas9 therapeutics. We describe how recent reports emphasize that nonviral vectors, including lipid-based nanoparticles, extracellular vesicles, polymeric nanoparticles, gold nanoparticles, and mesoporous silica nanoparticles, can offer diverse advantages to enhance stability, cellular uptake, and biocompatibility, based on their structures and physio-chemical stability. We also summarize recent progress on stimuli-responsive nanoformulations, a type of non-viral vector, to introduce precision and control in CRISPR-Cas9 delivery. Stimuli-responsive nanoformulations are designed to respond to pH, redox states, and external triggers, facilitate controlled and targeted delivery, and minimize off-target effects. The insights in our review suggest future challenges for clinical applications of gene therapy technologies and highlight the potential of delivery systems to enhance CRISPR-Cas9's clinical efficacy, positioning them as pivotal tools for future gene-editing therapies.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si 24341, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| |
Collapse
|
5
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
7
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
8
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
9
|
Tsuchida CA, Wasko KM, Hamilton JR, Doudna JA. Targeted nonviral delivery of genome editors in vivo. Proc Natl Acad Sci U S A 2024; 121:e2307796121. [PMID: 38437567 PMCID: PMC10945750 DOI: 10.1073/pnas.2307796121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Cell-type-specific in vivo delivery of genome editing molecules is the next breakthrough that will drive biological discovery and transform the field of cell and gene therapy. Here, we discuss recent advances in the delivery of CRISPR-Cas genome editors either as preassembled ribonucleoproteins or encoded in mRNA. Both strategies avoid pitfalls of viral vector-mediated delivery and offer advantages including transient editor lifetime and potentially streamlined manufacturing capability that are already proving valuable for clinical use. We review current applications and future opportunities of these emerging delivery approaches that could make genome editing more efficacious and accessible in the future.
Collapse
Affiliation(s)
- Connor A. Tsuchida
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Kevin M. Wasko
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer R. Hamilton
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer A. Doudna
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Gladstone Institutes, University of California,San Francisco, CA94158
- HHMI, University of California, Berkeley, CA94720
| |
Collapse
|
10
|
Wang L, Geng J, Wang H. Emerging Landscape of Supercharged Proteins and Peptides for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:614-629. [PMID: 38481692 PMCID: PMC10928892 DOI: 10.1021/acsptsci.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2025]
Abstract
Although groundbreaking biotechnological techniques such as gene editing have significantly progressed, the effective and targeted transport of therapeutic agents into host cells remains a major obstacle to the development of biotherapeutics. Confronting the unique challenge posed by large macromolecules such as proteins, peptides, and nucleic acids adds complexity to this issue. Recent findings reveal that the supercharging of proteins and peptides not only enables control over critical properties, such as temperature resistance and catalytic activity, but also holds promise as a viable strategy for their use in drug delivery. This review provides a concise summary of the attributes of supercharged proteins and peptides, encompassing both their natural occurrence and engineered variants. Furthermore, it sheds light on the present status and future possibilities of supercharged proteins and peptides as carriers for significant biomolecules in the realms of medical research and therapeutic applications.
Collapse
Affiliation(s)
- Lidan Wang
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
11
|
Chen K, Stahl EC, Kang MH, Xu B, Allen R, Trinidad M, Doudna JA. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. Nat Commun 2024; 15:1727. [PMID: 38409124 PMCID: PMC10897210 DOI: 10.1038/s41467-024-45998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
The delivery of CRISPR ribonucleoproteins (RNPs) for genome editing in vitro and in vivo has important advantages over other delivery methods, including reduced off-target and immunogenic effects. However, effective delivery of RNPs remains challenging in certain cell types due to low efficiency and cell toxicity. To address these issues, we engineer self-deliverable RNPs that can promote efficient cellular uptake and carry out robust genome editing without the need for helper materials or biomolecules. Screening of cell-penetrating peptides (CPPs) fused to CRISPR-Cas9 protein identifies potent constructs capable of efficient genome editing of neural progenitor cells. Further engineering of these fusion proteins establishes a C-terminal Cas9 fusion with three copies of A22p, a peptide derived from human semaphorin-3a, that exhibits substantially improved editing efficacy compared to other constructs. We find that self-deliverable Cas9 RNPs generate robust genome edits in clinically relevant genes when injected directly into the mouse striatum. Overall, self-deliverable Cas9 proteins provide a facile and effective platform for genome editing in vitro and in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Elizabeth C Stahl
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Min Hyung Kang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bryant Xu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Ryan Allen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marena Trinidad
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Zeng Y, Liao D, Kong X, Huang Q, Zhong M, Liu J, Nezamzadeh-Ejhieh A, Pan Y, Song H. Current status and prospect of ZIF-based materials for breast cancer treatment. Colloids Surf B Biointerfaces 2023; 232:113612. [PMID: 37898043 DOI: 10.1016/j.colsurfb.2023.113612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer, one of the three most life-threatening cancers in modern times, must be explored for treatments with low side effects and practical efficacy. Metal organic framework materials (MOFs) is made by metal ions as the center for point and organic ligands as a bridge connecting a new type of porous nano-materials, among them, the zinc base zeolite imidazole skeleton material series (ZIFs) because of its excellent biocompatibility and pH slow controlled release ability, is widely used in the tumor microenvironment in basic research and achieved remarkable curative effect. Inspired by this, in this review, we focus on the recent research progress on the application of ZIFs in the treatment of breast cancer, mainly studying the structure of ZIFs such as ZIF-8, ZIF-90 and ZIF-67 and their application in novel therapies for breast cancer treatment, such as targeted drug delivery, photothermal therapy, immunotherapy and gene therapy.We will more fully demonstrate the potential of zif in breast cancer treatment, hoping to provide an avenue for exploring breast cancer treatment.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xiangyang Kong
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Qianying Huang
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Muyi Zhong
- Breast Department, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong 523770, China.
| |
Collapse
|
13
|
Chen K, Stahl EC, Kang MH, Xu B, Allen R, Trinidad M, Doudna JA. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567251. [PMID: 38014180 PMCID: PMC10680703 DOI: 10.1101/2023.11.15.567251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The delivery of CRISPR ribonucleoproteins (RNPs) for genome editing in vitro and in vivo has important advantages over other delivery methods, including reduced off-target and immunogenic effects 1 . However, effective delivery of RNPs remains challenging in certain cell types due to low efficiency and cell toxicity. To address these issues, we engineered self-deliverable RNPs that can promote efficient cellular uptake and carry out robust genome editing without the need for helper materials or biomolecules. Screening of cell-penetrating peptides (CPPs) fused to CRISPR-Cas9 protein identified potent constructs capable of efficient genome editing of neural progenitor cells. Further engineering of these fusion proteins identified a C-terminal Cas9 fusion with three copies of A22p, a peptide derived from human semaphorin-3a, that exhibited substantially improved editing efficacy compared to other constructs. We found that self-deliverable Cas9 RNPs generated robust genome edits in clinically relevant genes when injected directly into the mouse striatum. Overall, self-deliverable Cas9 proteins provide a facile and effective platform for genome editing in vitro and in vivo .
Collapse
|
14
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
18
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
19
|
Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS APPLIED BIO MATERIALS 2022; 5:413-437. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of CRISPR/Cas technology has enabled scientists to precisely edit genomic DNA sequences. This approach can be used to modulate gene expression for the treatment of genetic disorders and incurable diseases such as cancer. This potent genome-editing tool is based on a single guide RNA (sgRNA) strand that recognizes the targeted DNA, plus a Cas nuclease protein for binding and processing the target. CRISPR/Cas has great potential for editing many genes in different types of cells and organisms both in vitro and in vivo. Despite these remarkable advances, the risk of off-target effects has hindered the translation of CRISPR/Cas technology into clinical applications. To overcome this hurdle, researchers have devised gene regulatory systems that can be controlled in a spatiotemporal manner, by designing special sgRNA, Cas, and CRISPR/Cas delivery vehicles that are responsive to different stimuli, such as temperature, light, magnetic fields, ultrasound (US), pH, redox, and enzymatic activity. These systems can even respond to dual or multiple stimuli simultaneously, thereby providing superior spatial and temporal control over CRISPR/Cas gene editing. Herein, we summarize the latest advances on smart sgRNA, Cas, and CRISPR/Cas nanocarriers, categorized according to their stimulus type (physical, chemical, or biological).
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Atefeh Jahandideh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Niloofar Haeri Moghaddam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyede Mahtab Kamrani Mousavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
20
|
Ji Y, Liansheng F, Suchen Q, Han X. Stimuli-Responsive Delivery Strategies for Controllable Gene Editing in Tumor Therapeutics. J Mater Chem B 2022; 10:7694-7707. [DOI: 10.1039/d2tb01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR system has attracted significant interest due to its great potential in tumour therapy. Developing effective, precise and safe delivery vectors is a prerequisite for CRISPR applications. Some disease-related biological...
Collapse
|
21
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
22
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
23
|
Tang N, Ning Q, Wang Z, Tao Y, Zhao X, Tang S. Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches. Colloids Surf B Biointerfaces 2021; 210:112257. [PMID: 34894597 DOI: 10.1016/j.colsurfb.2021.112257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have emerged as robust tools in cancer gene therapy due to their simplicity and versatility. Nevertheless, the genome editing efficiency in tumor sites and the clinical applications of CRISPR/Cas have been compromised by non-specific delivery and genotoxicity. Recently, intelligent delivery systems incorporating sensitive materials in response to endogenous stimuli of the tumor microenvironment (TME) have represented viable platforms for tumor-specific genome editing and reduced side effects of CRISPR/Cas. Spurred by this promising direction, this review first introduces the CRISPR/Cas systems widely employed in cancer therapeutic explorations. Various types of CRISPR/Cas delivery systems sensitive to the stimuli in TME and typical dual-/multiple-responsive CRISPR/Cas carriers are further discussed, emphasizing the correlations between sensitive components and spatiotemporal delivery mechanisms. The genome editing efficiencies of CRISPR/Cas-loaded stimuli-responsive carriers are also summarized both in vitro and in vivo. Collectively, stimuli-responsive CRISPR/Cas delivery systems hold great promise for potent cancer gene therapy.
Collapse
Affiliation(s)
- Nanyang Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Zewei Wang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Yifang Tao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Shengsong Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
24
|
Sun B, Chen H, Gao X. Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application. J Control Release 2021; 337:698-717. [PMID: 34364918 DOI: 10.1016/j.jconrel.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The development of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems has created a tremendous wave that is sweeping the world of genome editing. The ribonucleoprotein (RNP) method has evolved to be the most advantageous form for in vivo application. Modification of the CRISPR/Cas9 RNP method to adapt delivery through a variety of carriers can either directly improve the stability and specificity of the gene-editing tool in vivo or indirectly endow the system with high gene-editing efficiency that induces few off-target mutations through different delivery methods. The exploration of in vivo applications mediated by various delivery methods lays the foundation for genome research and variety improvements, which is especially promising for better in vivo research in the field of translational biomedicine. In this review, we illustrate the modifiable structures of the Cas9 nuclease and single guide RNA (sgRNA), summarize the latest research progress and discuss the feasibility and advantages of various methods. The highlighted results will enhance our knowledge, stimulate extensive research and application of Cas9 and provide alternatives for the development of rational delivery carriers in multiple fields.
Collapse
Affiliation(s)
- Bixi Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Hening Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Xiaoshu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| |
Collapse
|
25
|
Wang Q, Yang Y, Liu D, Ji Y, Gao X, Yin J, Yao W. Cytosolic Protein Delivery for Intracellular Antigen Targeting Using Supercharged Polypeptide Delivery Platform. NANO LETTERS 2021; 21:6022-6030. [PMID: 34227381 DOI: 10.1021/acs.nanolett.1c01190] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the well-recognized clinical success of therapeutic proteins, especially antibodies, their inability to penetrate the cell membrane restricts them to secretory extracellular or membrane-associated targets. Developing a direct cytosolic protein delivery system would offer unique opportunities for intracellular target-related therapeutic proteins. Here, we generated a supercharged polypeptide (SCP) with high cellular uptake efficiency, endosomal escape ability, and good biosafety and developed an SCP with an unnatural amino acid containing the phenylboronic acid (PBA) group, called PBA-SCP. PBA-SCP is capable of potently delivering proteins with various isoelectric points and molecular sizes into the cytosol of living cells without affecting their bioactivities. Importantly, cytosolically delivered antibodies remain functional and are capable of targeting, labeling, and manipulating diverse intracellular antigens. This study demonstrates an efficient and versatile intracellular protein delivery platform, especially for antibodies, and provides new possibilities for expanding protein-based therapeutics to intracellular "undruggable" targets.
Collapse
Affiliation(s)
- Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
26
|
Lyu Y, Yang C, Lyu X, Pu K. Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005222. [PMID: 33759340 DOI: 10.1002/smll.202005222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Indexed: 05/17/2023]
Abstract
Among programmable nuclease-based genome editing tools, the clustered regularly interspaced short palindromic repeats (CRISPR) system with accuracy and the convenient operation is most promising to be applied in gene therapy. The development of effective delivery carriers for the CRISPR system is the major premise to achieve practical applications. Although many nanocarrier-mediated deliveries have been reported to be safer and cheaper over the physical and viral delivery, the accumulation at disease sites or controllability with the spatial or temporal resolution are still desired on nanocarriers to reduce side effects and off-target from the CRISPR system. Therefore, the targetable and controllable nanocarriers to actively deliver the CRISPR system are summarized. The cell or even organ selective nanocarriers are introduced first, followed by the discussion of nanocarriers controlled by biochemical or physical signals. At last, the potential challenges faced by existing nanocarriers are discussed.
Collapse
Affiliation(s)
- Yan Lyu
- Cosmetic Innovation Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Cosmetic Innovation Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
27
|
Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021; 11:614-648. [PMID: 33391496 PMCID: PMC7738854 DOI: 10.7150/thno.47007] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 genome editing has gained rapidly increasing attentions in recent years, however, the translation of this biotechnology into therapy has been hindered by efficient delivery of CRISPR/Cas9 materials into target cells. Direct delivery of CRISPR/Cas9 system as a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single guide RNA (sgRNA) has emerged as a powerful and widespread method for genome editing due to its advantages of transient genome editing and reduced off-target effects. In this review, we summarized the current Cas9 RNP delivery systems including physical approaches and synthetic carriers. The mechanisms and beneficial roles of these strategies in intracellular Cas9 RNP delivery were reviewed. Examples in the development of stimuli-responsive and targeted carriers for RNP delivery are highlighted. Finally, the challenges of current Cas9 RNP delivery systems and perspectives in rational design of next generation materials for this promising field will be discussed.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangtao Shen
- The Second People's Hospital of Taizhou affiliated to Yangzhou University, Taizhou, 225500, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics 2020; 12:pharmaceutics12121233. [PMID: 33353099 PMCID: PMC7766488 DOI: 10.3390/pharmaceutics12121233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-editing technology has emerged as a potential tool for treating incurable diseases for which few therapeutic modalities are available. In particular, discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system together with the design of single-guide RNAs (sgRNAs) has sparked medical applications of genome editing. Despite the great promise of the CRISPR/Cas system, its clinical application is limited, in large part, by the lack of adequate delivery technology. To overcome this limitation, researchers have investigated various systems, including viral and nonviral vectors, for delivery of CRISPR/Cas and sgRNA into cells. Among nonviral delivery systems that have been studied are nanovesicles based on lipids, polymers, peptides, and extracellular vesicles. These nanovesicles have been designed to increase the delivery of CRISPR/Cas and sgRNA through endosome escape or using various stimuli such as light, pH, and environmental features. This review covers the latest research trends in nonviral, nanovesicle-based delivery systems that are being applied to genome-editing technology and suggests directions for future progress.
Collapse
|
29
|
Alyami MZ, Alsaiari SK, Li Y, Qutub SS, Aleisa FA, Sougrat R, Merzaban JS, Khashab NM. Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks. J Am Chem Soc 2020; 142:1715-1720. [PMID: 31931564 DOI: 10.1021/jacs.9b11638] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Effective and cell-type-specific delivery of CRISPR/Cas9 gene editing elements remains a challenging open problem. Here we report the development of biomimetic cancer cell coated zeolitic imidazolate frameworks (ZIFs) for targeted and cell-specific delivery of this genome editing machinery. Coating ZIF-8 that is encapsulating CRISPR/Cas9 (CC-ZIF) with a cancer cell membrane resulted in the uniformly covered C3-ZIF(cell membrane type). Incubation of C3-ZIFMCF with MCF-7, HeLa, HDFn, and aTC cell lines showed the highest uptake by MCF-7 cells and negligible uptake by the healthy cells (i.e., HDFn and aTC). As to genome editing, a 3-fold repression in the EGFP expression was observed when MCF-7 were transfected with C3-ZIFMCF compared to 1-fold repression in the EGFP expression when MCF-7 were transfected with C3-ZIFHELA. In vivo testing confirmed the selectivity of C3-ZIFMCF to accumulate in MCF-7 tumor cells. This supports the ability of this biomimetic approach to match the needs of cell-specific targeting, which is unquestionably the most critical step in the future translation of genome editing technologies.
Collapse
Affiliation(s)
- Mram Z Alyami
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Shahad K Alsaiari
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Yanyan Li
- Cell Migration and Signaling Laboratory, Division of Biological and Environmental Science and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Somayah S Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Fajr A Aleisa
- Cell Migration and Signaling Laboratory, Division of Biological and Environmental Science and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Rachid Sougrat
- Advanced Nanofabrication Imaging and Characterization Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jasmeen S Merzaban
- Cell Migration and Signaling Laboratory, Division of Biological and Environmental Science and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
30
|
Amirkhanov RN, Stepanov GA. Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|