1
|
Yang Y, Fang Y, Du X, Ying Z, Lu X, Zhou J. Application of nanoparticles with activating STING pathway function in tumor synergistic therapy. Int Immunopharmacol 2025; 148:114013. [PMID: 39823790 DOI: 10.1016/j.intimp.2025.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
Although immunotherapy is currently one of the most promising methods for cancer treatment, its clinical application is limited due to issues such as excessive autoimmune responses and lack of specificity. Therefore, there is a need to improve immunotherapy by integrating emerging medical technologies with traditional treatments. The activation of the cGAS-STING pathway plays a crucial role in innate immunity and antiviral defense, making it highly promising for immunotherapy and attracting significant attention. In recent years, research on nanomaterials and immunotherapy has achieved groundbreaking progress in the medical field. Due to their unique size, shape, stiffness, surface effects, and quantum size effects, nanomaterials can either carry STING activators or directly activate the STING pathway, offering new opportunities for tumor-specific immunotherapy. These unique advantages of nanomaterials have opened up broader prospects for nanoparticle-based therapies targeting the STING pathway. This paper summarizes the current research on utilizing nanomaterials to activate the STING pathway, detailing the characteristics, classifications, and different approaches for targeting tumor cells. Additionally, it focuses on the latest advancements in combined nanotherapies based on cGAS-STING pathway activation, including the integration of nanomaterial-mediated STING pathway activation with immunotherapy, radiotherapy, chemotherapy, targeted therapy, and photodynamic therapy. This provides new ideas for nanoparticle-based combination therapies involving the STING pathway.
Collapse
Affiliation(s)
- Yi Yang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Yaning Fang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xinyu Du
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Zheye Ying
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xiwen Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
| | - Jing Zhou
- Department of Chemoradiotherapy, Ningbo NO.2 Hospital, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
2
|
Yang Z, Ren X, Li L, Zhang J, Yang X, Zhang Y, Whittaker AK, Yang B, Wang T, Lin Q. Trojan-horse inspired nanoblaster: X-ray triggered spot attack on radio-resistant cancer through radiodynamic therapy. Biomaterials 2025; 313:122814. [PMID: 39243672 DOI: 10.1016/j.biomaterials.2024.122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Radiotherapy as a mainstay of in-depth cervical cancer (CC) treatment suffers from its radioresistance. Radiodynamic therapy (RDT) effectively reverses radio-resistance by generating reactive oxygen species (ROS) with deep tissue penetration. However, the photosensitizers stimulated by X-ray have high toxicity and energy attenuation. Therefore, X-ray responsive diselenide-bridged mesoporous silica nanoparticles (DMSNs) are designed, loading X-ray-activated photosensitizer acridine orange (AO) for spot blasting RDT like Trojan-horse against radio-resistance cervical cancer (R-CC). DMSNs can encapsulate a large amount of AO, in the tumor microenvironment (TME), which has a high concentration of hydrogen peroxide, X-ray radiation triggers the cleavage of diselenide bonds, leading to the degradation of DMSNs and the consequent release of AO directly at the tumor site. On the one hand, it solves the problems of rapid drug clearance, adverse distribution, and side effects caused by simple AO treatment. On the other hand, it fully utilizes the advantages of highly penetrating X-ray responsive RDT to enhance radiotherapy sensitivity. This approach results in ROS-induced mitochondria damage, inhibition of DNA damage repair, cell cycle arrest and promotion of cancer cell apoptosis in R-CC. The X-ray responsive DMSNs@AO hold considerable potential in overcoming obstacles for advanced RDT in the treatment of R-CC.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, 130041, China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, 130041, China
| | - Xinting Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuxuan Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, 130041, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, 130041, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Ju Q, Huang R, Hu R, Fan J, Zhang D, Ding J, Li R. Phytic acid-modified manganese dioxide nanoparticles oligomer for magnetic resonance imaging and targeting therapy of osteosarcoma. Drug Deliv 2023; 30:2181743. [PMID: 36855959 PMCID: PMC9980014 DOI: 10.1080/10717544.2023.2181743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Osteosarcoma is the most common malignant tumor in the skeletal system with high mortality. Phytic acid (PA) is a natural compound extracted from plant seeds, which shows certain antitumor activity and good bone targeting ability. To develop a novel theranostics for magnetic resonance imaging (MRI) and targeting therapy of osteosarcoma, we employed PA to modify manganese dioxide nanoparticles (MnO2@PA NPs) for osteosarcoma treatment. The MnO2 NPs oligomer was formed by PA modification with uniformed size distribution and negative zeta potential. Fourier-transform infrared spectroscopy, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis demonstrated that PA has been successfully modified on MnO2 NPs, and the structure of MnO2@PA NPs is amorphous. In vitro experiments demonstrated that MnO2@PA NPs oligomer can be efficiently internalized by tumor cell, and the internalized NPs can react with H2O2 under acid microenvironment to produce Mn2+ and O2. In vivo experiments demonstrated that MnO2@PA NPs oligomer can passively accumulate in tumor tissue, and the accumulated NPs can produce Mn2+ and O2 for MRI and targeting therapy of osteosarcoma. In conclusion, we prepared a novel bone-targeting nano theranostics for MRI and therapy of osteosarcoma.
Collapse
Affiliation(s)
- Qian Ju
- College of Chemistry, Chongqing Normal University, Chongqing, China,Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rong Huang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junjie Fan
- Department of Clinical Laboratory, the 958th Hospital of Chinese People’s Liberation Army, Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China,Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China,Dinglin Zhang or Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing400038, China
| | - Jun Ding
- Department of Ultrasonics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China,Jun Ding Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China
| | - Rong Li
- College of Chemistry, Chongqing Normal University, Chongqing, China,CONTACT Rong Li College of Chemistry, Chongqing Normal University, Chongqing401331, China
| |
Collapse
|
4
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
5
|
Zhang H, Luo P, Huang X. Engineered nanomaterials enhance drug delivery strategies for the treatment of osteosarcoma. Front Pharmacol 2023; 14:1269224. [PMID: 37670948 PMCID: PMC10475588 DOI: 10.3389/fphar.2023.1269224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in adolescents, and the clinical treatment of OS mainly includes surgery, radiotherapy, and chemotherapy. However, the side effects of chemotherapy drugs are an issue that clinicians cannot ignore. Nanomedicine and drug delivery technologies play an important role in modern medicine. The development of nanomedicine has ushered in a new turning point in tumor treatment. With the emergence and development of nanoparticles, nanoparticle energy surfaces can be designed with different targeting effects. Not only that, nanoparticles have unique advantages in drug delivery. Nanoparticle delivery drugs can not only reduce the toxic side effects of chemotherapy drugs, but due to the enhanced permeability retention (EPR) properties of tumor cells, nanoparticles can survive longer in the tumor microenvironment and continuously release carriers to tumor cells. Preclinical studies have confirmed that nanoparticles can effectively delay tumor growth and improve the survival rate of OS patients. In this manuscript, we present the role of nanoparticles with different functions in the treatment of OS and look forward to the future treatment of improved nanoparticles in OS.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Ping Luo
- Science and Technology Education Section, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Xiaojun Huang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| |
Collapse
|
6
|
Taheri-Ledari R, Tarinsun N, Sadat Qazi F, Heidari L, Saeidirad M, Ganjali F, Ansari F, Hassanzadeh-Afruzi F, Maleki A. Vancomycin-Loaded Fe 3O 4/MOF-199 Core/Shell Cargo Encapsulated by Guanidylated-β-Cyclodextrine: An Effective Antimicrobial Nanotherapeutic. Inorg Chem 2023; 62:2530-2547. [PMID: 36734619 DOI: 10.1021/acs.inorgchem.2c02634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study describes an efficient antimicrobial drug delivery system composed of iron oxide magnetic nanoparticles (Fe3O4 NPs) coated by an MOF-199 network. Then, the prepared vancomycin (VAN)-loaded carrier was fully packed in a lattice of beta-cyclodextrin (BCD). For cell adhesion, beta-cyclodextrin has been functionalized with guanidine (Gn) groups within in situ synthetic processes. Afterward, drug loading efficiency and the release patterns were investigated through precise analytical methods. Confocal microscopy has shown that the prepared cargo (formulated as [VAN@Fe3O4/MOF-199]BCD-Gn) could be attached to the Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial cells in a higher rate than the individual VAN. The presented system considerably increased the antibacterial effects of the VAN with a lower dosage of drug. The cellular experiments such as the zone of inhibition and optical density (OD600) have confirmed the enhanced antibacterial effect of the designed cargo. In addition, the MIC/MBC (minimum inhibitory and bactericidal concentrations) values have been estimated for the prepared cargo compared to the individual VAN, revealing high antimicrobial potency of the VAN@Fe3O4/MOF-199]BCD-Gn cargo.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Nasibe Tarinsun
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
7
|
Qin J, Liang Q, Wang G, Hao L, Liu X, Wang X, Hu Z, Fang G, Xue L, Zhao Y, Li R, Lv Q, Wen J, Yang G, Han C, Shi Z. Targeted delivery of nuclear targeting probe for bladder cancer using cyclic pentapeptide c(RGDfK) and acridine orange. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:375-383. [PMID: 36100735 DOI: 10.1007/s12094-022-02938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Both cyclic pentapeptide c(RGDfK) and acridine orange (AO) exhibit antitumor effects and cell permeability. This study aimed to evaluate the nuclear targeting efficiency and safety of the nuclear targeting probe for bladder cancer (BCa) synthesized by c(RGDfK) and AO. METHODS The nuclear targeting probe AO-(cRGDfK)2 was synthesized from AO hydrochloride, azided c(RGDfK), and a near-infrared skeleton synthesized via click chemistry reactions. The effect of the AO-(cRGDfK)2 probe on cell viability was assessed in BCa 5637 cells. The tumor cell targeting efficacy of the AO-(cRGDfK)2 probe was evaluated in BCa cells in vitro and in tumor-bearing mice in vivo. Nuclear-specific accumulation of fluorescence probe in BCa tumor cells was evaluated using laser scanning confocal microscopy (LSCM). Hematoxylin and eosin staining was performed to detect histopathological changes in the spleen, heart, liver, and kidney. RESULTS The AO-(cRGDfK)2 probe did not cause a significant reduction in cell viability. LSCM analysis showed that AO-(cRGDfK)2 exhibited nuclear-specific ambulation in BCa cells and was not accumulated in 293T cells. Also, this probe efficiently targeted tumor cells in the serum and urine samples. In vivo imaging system of tumor-bearing mice showed that ~ 80% percent of fluorescence signal was accumulated in the tumor sites. The probe did not change histopathology in the heart, liver, spleen, and kidney in tumor-bearing mice after the 21-day treatment. CONCLUSIONS The AO-(cRGDfK)2 probe exhibited nuclear-specific accumulation in BCa cells without cytotoxicity, which provides an innovative alternative to improve anticancer therapy for BCa.
Collapse
Affiliation(s)
- Jiaxin Qin
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qing Liang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Guangyue Wang
- Graduate School of Bengbu Medical College, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xing Liu
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xinlei Wang
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhengxiang Hu
- Graduate School of Jinzhou Medical College, Liaoning, China
| | - Gaochuan Fang
- School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Liang Xue
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yan Zhao
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Rui Li
- Central Laboratory, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qian Lv
- Central Laboratory, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital Ji'an Hospital, Jiangxi, People's Republic of China.,Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital Ji'an Hospital, Jiangxi, People's Republic of China.,Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| | - Zhenduo Shi
- Department of Urology, Xuzhou Clinical College of Xuzhou Medical University, Jiefang South Road, No. 199, Xuzhou, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.
| |
Collapse
|
8
|
Shen H, Huang H, Jiang Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front Pharmacol 2023; 14:1145551. [PMID: 36873996 PMCID: PMC9977822 DOI: 10.3389/fphar.2023.1145551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Radiotherapy remains the mainstay treatment for a variety of cancer forms. However, the therapeutic efficiency of radiation is significantly limited by several aspects, including high radiation resistance caused by low reactive oxygen species concentrations and a low absorption rate of radiation by tumor tissue, inappropriate tumor cell cycle and tumor cell apoptosis, and serious radiation damage to normal cells. In recent years, nanoparticles have been widely used as radiosensitizers due to their unique physicochemical properties and multifunctionalities for potentially enhancing radiation therapy efficacy. In this study, we systematically reviewed several nanoparticle-based radiosensitization strategies for radiation therapy use, including designing nanoparticles that upregulate the levels of reactive oxygen species, designing nanoparticles that enhance the radiation dose deposit, designing chemical drug-loaded nanoparticles for enhancing cancer cell sensitivity to radiation, designing antisense oligonucleotide gene-loaded nanoparticles, and designing nanoparticles using a unique radiation-activable property. The current challenges and opportunities for nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Hongxin Shen
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hong Huang
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhimei Jiang
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Liposomes encapsulating methylene blue and acridine orange: An approach for phototherapy of skin cancer. Colloids Surf B Biointerfaces 2022; 220:112901. [DOI: 10.1016/j.colsurfb.2022.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
10
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|
11
|
Xu Z, Luo T, Mao J, McCleary C, Yuan E, Lin W. Monte Carlo Simulation-Guided Design of a Thorium-Based Metal-Organic Framework for Efficient Radiotherapy-Radiodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202208685. [PMID: 36149753 PMCID: PMC9647855 DOI: 10.1002/anie.202208685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/09/2022]
Abstract
High-Z metal-based nanoscale metal-organic frameworks (nMOFs) with photosensitizing ligands can enhance radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process. Here we report Monte Carlo (MC) simulation-guided design of a Th-based nMOF built from Th6 -oxo secondary building units and 5,15-di(p-benzoato)porphyrin (DBP) ligands, Th-DBP, for enhanced RT-RDT. MC simulations revealed that the Th-lattice outperformed the Hf-lattice in radiation dose enhancement owing to its higher mass attenuation coefficient. Upon X-ray or γ-ray radiation, Th-DBP enhanced energy deposition, generated more reactive oxygen species, and induced significantly higher cytotoxicity to cancer cells over the previously reported Hf-DBP nMOF. With low-dose X-ray irradiation, Th-DBP suppressed tumor growth by 88 % in a colon cancer and 97 % in a pancreatic cancer mouse model.
Collapse
Affiliation(s)
- Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Jianming Mao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Caroline McCleary
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 (USA)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| |
Collapse
|
12
|
Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The precision, minimal invasiveness, and integration of diagnosis and treatment are critical factors for tumor treatment at the present. Although nanomedicine has shown the potential in tumor precision treatment, nanocarriers with high efficiency, excellent targeting, controlled release, and good biocompatibility still need to be further explored. Hollow mesoporous manganese oxides nanomaterials (HM-MONs), as an efficient drug delivery carrier, have attracted substantial attention in applications of tumor diagnosis and therapy due to their unique properties, such as tumor microenvironment stimuli-responsiveness, prominent catalytic activity, excellent biodegradation, and outstanding magnetic resonance imaging ability. The HM-MONs can not only enhance the therapeutic efficiency but also realize multimodal diagnosis of tumors. Consequently, it is necessary to introduce applications based on HM-MONs in cancer diagnosis and therapy. In this review, the representative progress of HM-MONs in synthesis is discussed. Then, several promising applications in drug delivery, bio-imaging, and bio-detection are highlighted. Finally, the challenges and perspectives of the anticancer applications are summarized, which is expected to provide meaningful guidance on further research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
13
|
Vinoth N, Lalitha A. Synthesis of new
1
H
‐spiro[acridine‐9,3′‐indoline]‐1,2′(
2
H
,
10
H
)‐dione derivatives using aqueous ethanol as a reaction medium. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Shin S, Lee J, Han J, Li F, Ling D, Park W. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med 2021; 19:205-219. [PMID: 34674182 DOI: 10.1007/s13770-021-00403-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the major diseases that threaten human life worldwide. Despite advances in cancer treatment techniques, such as radiation therapy, chemotherapy, targeted therapy, and immunotherapy, it is still difficult to cure cancer because of the resistance mechanism of cancer cells. Current understanding of tumor biology has revealed that resistance to these anticancer therapies is due to the tumor microenvironment (TME) represented by hypoxia, acidity, dense extracellular matrix, and immunosuppression. This review demonstrates the latest strategies for effective cancer treatment using functional nanoparticles that can modulate the TME. Indeed, preclinical studies have shown that functional nanoparticles can effectively modulate the TME to treat refractory cancer. This strategy of using TMEs with controllable functional nanoparticles is expected to maximize cancer treatment efficiency in the future by combining it with various modern cancer therapeutics.
Collapse
Affiliation(s)
- Seungyong Shin
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jieun Han
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wooram Park
- Department of Biomedical-Chemical Engineering and Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea. .,Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi, 14662, Republic of Korea.
| |
Collapse
|
15
|
Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1084. [PMID: 33922170 PMCID: PMC8145730 DOI: 10.3390/nano11051084] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
The expanding applications of nanotechnology seem to be a response to many technological, environmental, and medical challenges. The unique properties of nanoparticles allow for developing new technologies and therapies. Among many investigated compounds is manganese and its oxides, which in the form of nanoparticles, could be a promising alternative for gadolinium-based contrast agents used in diagnostic imaging. Manganese, which is essential for living organisms as an enzyme cofactor, under excessive exposure-for example, due to water contamination or as an occupational hazard for welders-can lead to neurological disorders, including manganism-a condition similar to Parkinson's disease. This review attempts to summarise the available literature data on the potential applications of manganese and manganese oxide nanoparticles and their biological activity. Some of the published studies, both in vitro and in vivo, show negative effects of exposure to manganese, mainly on the nervous system, whereas other data suggest that it is possible to develop functionalised nanoparticles with negligible toxicity and novel promising properties.
Collapse
Affiliation(s)
- Zuzanna Sobańska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Kornelia Kowalczyk
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Maciej Stępnik
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
- QSAR Lab Ltd., Trzy Lipy 3 St., 80-172 Gdańsk, Poland
| |
Collapse
|
16
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
17
|
Abstract
Cancer is a multifactorial disease that involves unique tumor microenvironment (TEM) and abnormal organs with complex structures.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology
- Southeast University School of Medicine
- Nanjing 210009
- People's Republic of China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering Southeast University
- People's Republic of China
| | - Daqing Gao
- Department of Pathogenic Microbiology and Immunology
- Southeast University School of Medicine
- Nanjing 210009
- People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. NANOSCALE 2020; 12:17982-18003. [PMID: 32870227 DOI: 10.1039/d0nr04067c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanostructured manganese dioxide (MnO2) has attracted extensive attention in the field of anticancer applications. As we all know, the tumor microenvironment is usually characterized by a high glutathione (GSH) concentration, overproduced hydrogen peroxide (H2O2), acidity, and hypoxia, which affect the efficacy of many traditional treatments such as chemotherapy, radiotherapy, and surgery. Fortunately, as one kind of redox-active nanomaterial, nanostructured MnO2 has many excellent properties such as strong oxidation ability, excellent catalytic activity, and good biodegradability. It can be used effectively in diagnosis and treatment when it reacts with some harmful substances in the tumor site. It can not only enhance the therapeutic effect but also adjust the tumor microenvironment. Therefore, it is necessary to present the recent achievements and progression of nanostructured MnO2 for anticancer applications, including preparation methods, diagnosis, and treatment. Special attention was paid to photodynamic therapy (PDT), bioimaging and cancer diagnosis (BCD), and drug delivery systems (DDS). This review is expected to provide helpful guidance on further research of nanostructured MnO2 for anticancer applications.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | | |
Collapse
|
19
|
Barium tungstate nanoparticles to enhance radiation therapy against cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102230. [DOI: 10.1016/j.nano.2020.102230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 02/29/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022]
|
20
|
Abstract
Recent achievements of MnO2-based nanosystems for various cancer therapies are comprehensively reviewed.
Collapse
Affiliation(s)
- Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province
- College of Pharmaceutical Science
- Hebei University
- Baoding 071002
- China
| | - Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization
- Ministry of Education
- School of Pharmacy
- Shihezi University
- Shihezi 832002
| |
Collapse
|