1
|
Munoz CJ, Lucas D, Muller CR, Martinez J, O'Boyle Q, Pires IS, Palmer AF, Cabrales P. Coadministration of PEGylated apohemoglobin and haptoglobin can limit vascular dysfunction in the microcirculation and prevent acute inflammation. J Appl Physiol (1985) 2024; 137:934-944. [PMID: 39143905 PMCID: PMC11486475 DOI: 10.1152/japplphysiol.00315.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Unfortunately, during pathological conditions resulting in chronic hemolysis cell-free hemoglobin (Hb) is released into the circulation that releases free heme, resulting in several complications. One approach to prevent these toxicities is the administration of supplemental scavenger proteins, haptoglobin (Hp) and hemopexin (Hpx). The goal of this body of work is to objectively measure the levels of vascular reactivity and inflammatory profiles after an infusion of acellular hemoglobin in animals that were given a coadministration of PEGylated human apohemoglobin (PEG-apoHb), a hemopexin (Hpx)-mimetic that can scavenge free heme from hemoglobin, together with human plasma-derived Hp that can scavenge dimerized Hb. Using intravital microscopy, Golden Syrian hamsters instrumented with a dorsal window chamber were used to evaluate the in vivo effects of four experimental groups that were then challenged with a hypovolemic injection (10% of the animal's blood volume) of human Hb (hHb, 5 g/dL). The four experimental groups consisted of: 1) lactated Ringer's solution (control), 2) PEG-apoHb only, 3) Hp only, and 4) PEG-apoHb + Hp. The microvascular hemodynamics (diameter and flow) in arterioles and venules were recorded at baseline, 20 min after treatment, and 20 min after hHb challenge. Systemic parameters (blood pressure and heart rate), blood gases (pH, Pco2, and Po2), blood parameters (Hb concentration and hematocrit), and multiorgan functionality/inflammation were also measured. Our results suggest that coadministration of PEG-apoHb + Hp as a booster before the infusion of acellular hemoglobin significantly prevented vasoconstriction in the microcirculation, significantly increased the number of functional capillaries, and significantly reduced inflammation.NEW & NOTEWORTHY Coadministration of PEGylated human apohemoglobin (PEG-apoHb)-a hemopexin (Hpx) mimetic that can scavenge free heme-and human plasma-derived haptoglobin (Hp) that can scavenge hemoglobin (Hb), reduces microcirculatory dysfunction and cardiac and kidney inflammation in a Hb-challenge model.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Daniela Lucas
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Cynthia R Muller
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Jacinda Martinez
- Department of Bioengineering, University of California, San Diego, California, United States
| | - Quintin O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, California, United States
| |
Collapse
|
2
|
Yamada T, Katsumi M, Ishii K, Komatsu T. Zinc-Substituted Hemoglobin-Albumin Cluster as a Porphyrin-Carrier for Enhanced Photodynamic Therapy. Chem Asian J 2024; 19:e202400257. [PMID: 38632107 DOI: 10.1002/asia.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Apohemoprotein is focused on the field of theranostics, serving as a porphyrin carrier. Hemoglobin (Hb) consists of α2β2 tetramer with iron(II)-protoporphyrin IX (heme) bound to each globin. However, heme-removed Hb (apoHb) causes dissociation at αβ interfaces and aggregation under physiological conditions. We synthesized a stable apoHb derivative comprising intramolecular-crosslinked apoHb (apoXHb) and human serum albumin (HSA), apoXHb-HSA3. ApoXHb-HSA3 engendered no aggregates in the physiological solutions. Moreover, apoXHb-HSA3 was reconstituted with zinc(II)-protoporphyrin IX (ZnP), generating ZnXHb-HSA3, a potent photosensitizer for photodynamic therapy (PDT). The photophysical properties of ZnXHb-HSA3 were identical to those of zinc-substituted XHb (ZnXHb). Cellular uptake behavior was evaluated using various cancer cell lines. ZnXHb-HSA3 released ZnP around the cells, and the free ZnP penetrated cell membranes. In contrast, protein units were not observed within the cells. ZnXHb-HSA3 showed no cytotoxicity under dark conditions and demonstrated superior PDT activity in comparison to naked ZnXHb. ZnXHb-HSA3 acts as an innovative porphyrin carrier for enhanced PDT.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Maho Katsumi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Kota Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
| |
Collapse
|
3
|
Ma Y, Zhang Q, Dai Z, Li J, Li W, Fu C, Wang Q, Yin W. Structural optimization and prospect of constructing hemoglobin oxygen carriers based on hemoglobin. Heliyon 2023; 9:e19430. [PMID: 37809714 PMCID: PMC10558499 DOI: 10.1016/j.heliyon.2023.e19430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
The current global shortage of organ resources, the imbalance in donor-recipient demand and the increasing number of high-risk donors make organ preservation a necessity to consider appropriate storage options. The current method of use often has risks such as blood group mismatch, short shelf life, and susceptibility. HBOCs have positive effects such as anti-apoptotic, anti-inflammatory, antioxidant and anti-proliferative, which have significant advantages in organ storage. Therefore, it is the common pursuit of researchers to design and synthesize HBOCs with safety, ideal oxygen-carrying capacity, easy storage, etc. that are widely applicable and optimal for different organs. There has been a recent advancement in understanding HBOCs mechanisms, which is discussed in this review.
Collapse
Affiliation(s)
- Yuexiang Ma
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qi Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zheng Dai
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jing Li
- Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wenxiu Li
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chuanqing Fu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
4
|
Pires IS, Berthiaume F, Palmer AF. Engineering Therapeutics to Detoxify Hemoglobin, Heme, and Iron. Annu Rev Biomed Eng 2023; 25:1-21. [PMID: 37289555 DOI: 10.1146/annurev-bioeng-081622-031203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
5
|
Kawakami N, Nasu E, Miyamoto K. Dual Modification of Artificial Protein Cage. Methods Mol Biol 2023; 2671:147-156. [PMID: 37308644 DOI: 10.1007/978-1-0716-3222-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical modifications of proteins confer new functions on them or modulate their original functions. Although various approaches are developed for modifications, modifications of the two different reactive sites of proteins by different chemicals are still challenging. In this chapter, we show a simple approach for selective modifications of both interior and exterior surfaces of protein nanocages by two different chemicals based on a molecular size filter effect of the surface pores.
Collapse
Affiliation(s)
- Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.
| | - Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Munoz CJ, Pires IS, Jani V, Gopal S, Palmer AF, Cabrales P. Apohemoglobin-haptoglobin complex alleviates iron toxicity in mice with β-thalassemia via scavenging of cell-free hemoglobin and heme. Biomed Pharmacother 2022; 156:113911. [DOI: 10.1016/j.biopha.2022.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
|
7
|
Savla C, Palmer AF. Scalable manufacturing platform for the production of PEGylated heme albumin. Biotechnol Bioeng 2022; 119:3612-3622. [PMID: 36111455 PMCID: PMC9669187 DOI: 10.1002/bit.28237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Cell-free heme, which was previously shown to have adverse effects on the innate immune system, does not induce inflammation when bound to a protein carrier via overexpression of the enzyme heme-oxygenase 1 (HO-1). Studies in mouse macrophage cell culture and human endothelial cells have confirmed HO-1 catalyzed breakdown of protein bound heme into biliverdin, iron, and carbon monoxide (CO), which elicits anti-inflammatory effects. However, to fully realize the anti-inflammatory therapeutic effects of heme, a colloidally stable heme protein carrier must be developed. To accomplish this goal, we incorporated multiple heme molecules into human serum albumin (HSA) via partial unfolding of HSA at basic pH followed by refolding at neutral pH, and subsequently conjugated the surface of the heme-HSA complex with polyethylene glycol (PEG) to stabilize heme-HSA. Quantification studies confirmed that a maximum of 5-6 hemes could be bound to HSA without precipitation or degradation of heme-HSA. Dynamic light scattering, size exclusion-high performance liquid chromatography (SEC-HPLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry confirmed the increase in hydrodynamic diameter and molecular weight (MW), respectively, upon PEGylation of heme-HSA. Furthermore, PEG-heme-HSA was stable upon exposure to different pH environments, freeze-thaw cycles, and storage at 4°C. Taken together, we devised a synthesis and purification platform for the production of PEGylated heme-incorporated HSA that can be used to test the potential anti-inflammatory effects of heme in vivo.
Collapse
Affiliation(s)
- Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
8
|
Gu X, Savla C, Palmer AF. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties. Biotechnol Bioeng 2022; 119:176-186. [PMID: 34672363 PMCID: PMC8643326 DOI: 10.1002/bit.27962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
9
|
Pires IS, Govender K, Munoz CJ, Williams AT, O'Boyle QT, Savla C, Cabrales P, Palmer AF. Purification and analysis of a protein cocktail capable of scavenging cell-free hemoglobin, heme, and iron. Transfusion 2021; 61:1894-1907. [PMID: 33817808 DOI: 10.1111/trf.16393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemolysis releases toxic cell-free hemoglobin (Hb), heme, and iron, which overwhelm their natural scavenging mechanisms during acute or chronic hemolytic conditions. This study describes a novel strategy to purify a protein cocktail containing a comprehensive set of scavenger proteins for potential treatment of hemolysis byproducts. STUDY DESIGN AND METHODS Tangential flow filtration was used to purify a protein cocktail from Human Cohn Fraction IV (FIV). A series of in vitro assays were performed to characterize composition and biocompatibility. The in vivo potential for hemolysis byproduct mitigation was assessed in a hamster exchange transfusion model using mechanically hemolyzed blood plasma mixed with the protein cocktail or a control colloid (dextran 70 kDa). RESULTS A basis of 500 g of FIV yielded 62 ± 9 g of a protein mixture at 170 g/L, which bound to approximately 0.6 mM Hb, 1.2 mM heme, and 1.2 mM iron. This protein cocktail was shown to be biocompatible in vitro with red blood cells and platelets and exhibits nonlinear concentration dependence with respect to viscosity and colloidal osmotic pressure. In vivo assessment of the protein cocktail demonstrated higher iron transport to the liver and spleen and less to the kidney and heart with significantly reduced renal and cardiac inflammation markers and lower kidney and hepatic damage compared to a control colloid. DISCUSSION Taken together, this study provides an effective method for large-scale production of a protein cocktail suitable for comprehensive reduction of hemolysis-induced toxicity.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Krianthan Govender
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Quintin T O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Pires IS, O’Boyle QT, Munoz CJ, Savla C, Cabrales P, Palmer AF. Enhanced Photodynamic Therapy Using the Apohemoglobin-Haptoglobin Complex as a Carrier of Aluminum Phthalocyanine. ACS APPLIED BIO MATERIALS 2020; 3:4495-4506. [DOI: 10.1021/acsabm.0c00450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ivan S. Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Quintin T. O’Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carlos J. Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|