1
|
Subraveti SN, Nader MG, AziziHariri P, John VT, Lamichhane N, Raghavan SR. Vesicle-micelle transitions driven by ROS, light and heat. NANOSCALE 2024; 16:16942-16951. [PMID: 39207219 DOI: 10.1039/d4nr01543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vesicles are self-assembled nanocontainers (size ∼100 nm) in which solutes such as drugs can be encapsulated. There is great interest in triggering vesicle-micelle transitions (VMTs) because such transitions will result in the release of encapsulated solute. Here, we focus on reactive oxygen species (ROS) as a trigger for VMTs. ROS arise in our body within cells, and ROS levels are known to be high near a tumor. Thus, ROS-responsive vesicles are of interest. We make such vesicles by combining the cationic amphiphile (4-phenylthiophenyl)diphenyl-sulfonium triflate (PDST), and the anionic surfactant sodium dodecylbenzene sulfonate (SDBS). By simply mixing these two commercially available molecules in water, we prepare 'catanionic' vesicles in an easy, low-cost, and scalable way. When exposed to ROS such as hydrogen peroxide (H2O2), the thioether in the PDST tail gets oxidized to a hydrophilic sulfoxide. As a result, the vesicles are transformed into spherical or short, cylindrical micelles. Evidence for the VMT comes from turbidity, light scattering, and cryo-TEM measurements. The same vesicles are also sensitive to other stimuli, specifically light and temperature: i.e., a VMT can also be induced by irradiation with UV light or heating above a critical temperature. We explain the origin of the VMT in each case based on changes in the driving forces for amphiphile assembly.
Collapse
Affiliation(s)
- Sai Nikhil Subraveti
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Morine G Nader
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Pedram AziziHariri
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vijay T John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
2
|
Burni FA, Agrawal NR, Walker M, Ali H, Raghavan SR. Complexity in a Simple Self-Assembling System: Lecithin-Water-Ethanol Mixtures Exhibit a Re-Entrant Phase Transition and a Vesicle-Micelle Transition (VMT) on Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39158103 DOI: 10.1021/acs.langmuir.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We report surprising results for the self-assembly of lecithin (a common phospholipid) in water-ethanol mixtures. Lecithin forms vesicles (∼100 nm diameter) in water. These vesicles are transformed into small micelles (∼5 nm diameter) by a variety of destabilizing agents such as single-tailed surfactants and alcohols. In a surfactant-induced vesicle-micelle transition (VMT), vesicles steadily convert to micelles upon adding the surfactant─thereby, the turbidity of the solution drops monotonically. Instead, when an alcohol like ethanol is added to lecithin vesicles, we find a new, distinctive pattern in phase behavior as the ethanol fraction feth in water is increased. The turbidity first decreases (from feth = 0 to 37%), then rises sharply (feth = 37 to 50%), and then eventually decreases again (feth > 55%). Concomitant with the turbidity rise, the vesicles separate into two phases around feth = 50% before a single phase reappears at higher feth─in other words, there is a "re-entrant" phase transition from 1-phase to 2-phase and back to 1-phase with increasing feth. Vesicles near the phase boundary (∼feth = 45%) also show a VMT upon heating. Similar patterns are seen with other alcohols such as methanol and propanol. We ascribe these complex trends to the dual role played by alcohols: (a) first, alcohols reduce the propensity for flat lipid bilayers to bend and form closed spherical vesicles; and (b) second, alcohols diminish the tendency of lipids to self-assemble in the solvent mixture. At low alcohol fractions, (a) dominates, causing the initially unilamellar vesicles to grow into multilamellar vesicles (MLVs), which eventually phase-separate. Thereafter, (b) dominates, and the vesicles convert into micelles. Support for our hypothesis comes from scattering (SANS) and microscopy (cryo-TEM). Thus, we have uncovered a general paradigm for lipid self-assembly in solvent mixtures, and this may even have physiological relevance.
Collapse
Affiliation(s)
- Faraz A Burni
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Niti R Agrawal
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Walker
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hamna Ali
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Wang D, Xiao Z, He J, Xu W, Wang J. Strong Synergistic Molecular Interaction in Catanionic Surfactant Mixtures: Unravelling the Role of the Benzene Ring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12649-12661. [PMID: 37651421 DOI: 10.1021/acs.langmuir.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Noncovalent interactions play a crucial role in driving the formation of diverse self-assembled structures in surfactant systems. Surfactants containing a benzene ring structure are an important subset of surfactants. These surfactants exhibit unique colloid and interfacial properties, which give rise to fascinating transformations in the aggregate structures. These transformations are directly influenced by specific noncovalent interactions facilitated by the benzene ring structure including cation-π and π-π interactions. Investigating catanionic surfactant systems that incorporate benzene ring structures provides valuable insights into the distinct noncovalent interactions observed in mixed surfactant systems. Our approach involved studying the enthalpy change ΔH during the titration process, utilizing isothermal titration calorimetry (ITC). Simultaneously, we employed cryogenic transmission electron microscopy (cryo-TEM) to observe the corresponding self-assembly structures. To gain further insight, we delved into the noncovalent interactions of the mixed systems by analyzing the molecular environments variations through chemical shifts of the aggregates using proton magnetic resonance (1H NMR). The intermolecular interaction was also confirmed by the two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY). We conducted a systematic study of the effects of NaCl concentrations, molar ratios, and molecular structures of surfactants on aggregate structures. The existence forms of surfactants are closely linked to the shape of the titration curve and the transition of the aggregate structures. When cationic surfactants were titrated into sodium dodecylbenzenesulfonate (SDBS) micelle solutions, the dominant cation-π interaction leads to the direct formation of vesicle structures. Conversely, when the SDBS system is titrated into benzyldimethyldodecylammonium chloride (DDBAC) micelles, a delicate balance of multiple noncovalent interactions, including cation-π, π-π, hydrophobic, and electrostatic forces, results in a range of aggregate structure transformations such as worm-like micelles and vesicular structures.
Collapse
Affiliation(s)
- Dianlin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China
| | - Zili Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jiang He
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jingyi Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
4
|
Lu S, Dong J, Li X. Gradual transformation of anionic/zwitterionic wormlike micelles from viscous to elastic domains: Unravelling the effect of anionic surfactant chain length. J Colloid Interface Sci 2023; 641:319-328. [PMID: 36934579 DOI: 10.1016/j.jcis.2023.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
HYPOTHESIS Ultra-long tailed zwitterionic surfactants often form aqueous wormlike elastic micelles, whereas the shorter ones mainly exhibit spherical viscous micelles. Anionic surfactants are widely used to tune the micellar morphology from spherical into wormlike. Systematic investigations in the molecular level are insightful to understand the viscoelasticity regulative mechanism. EXPERIMENTS Anionic/zwitterionic hybrid wormlike micelles are composed of sodium alkylsulfate (SAS) homologues and dodecyl dimethyl amidopropyl hydroxyl sulfobetaine (DHSB). The formation of wormlike micelles was studied by employing rheometer, cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS) techniques. The effects of surfactant concentration, molar ratio, anionic surfactant chain length and temperature were investigated systematically. FINDINGS SAS promoted the formation of SAS/DHSB hybrid wormlike micelles. The increase in both chain length and molar ratio (xSAS) of SAS are advantageous in the enhancement of viscosity. Interestingly, sodium hexadecylsulfate (SHS) endowed elastic wormlike micelles with thermally insensitive viscosity below its Krafft temperature (Tk), which was distinguished from the viscous ones formed by sodium octylsulfate (SOS). SAXS results showed that the size of SAS/DHSB wormlike micelles was primarily determinate by surfactants with longer hydrophobic tails.
Collapse
Affiliation(s)
- Shuo Lu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jinfeng Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Xuefeng Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
5
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
6
|
Enhanced Sunscreen Effects via Layer-By-Layer Self-Assembly of Chitosan/Sodium Alginate/Calcium Chloride/EHA. Molecules 2022; 27:molecules27031148. [PMID: 35164413 PMCID: PMC8840156 DOI: 10.3390/molecules27031148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
The sunscreen nanocapsules were successfully synthesized by the way of layer-by-layer self-assembly using charged droplets (prepared by emulsification of LAD-30, Tween-80 and EHA (2-Ethylhexyl-4-dimethylaminobenzoate)) as templates. Chitosan/sodium alginate/calcium chloride were selected as wall materials to wrap EHA. The emulsions with the ratio of Tween-80 to EHA (1:1) were stable. A stable NEI negative emulsion can be obtained when the ratio of Tween-80 and LAD-30 was 9:1. Chitosan solutions (50 kDa, 0.25 mg/mL) and sodium alginate solutions (0.5 mg/mL) were selected to prepare nanocapsules. The nanocapsules were characterized via some physico-chemical methods. Based on the synergistic effects of the electrostatic interaction between wall materials and emulsifiers, EHA was effectively encapsulated. DLS and TEM showed that the sunscreen nanocapsules were dispersed in a spherical shape with nano-size, with the increasing number of assembly layers, the size increased from 155 nm (NEI) to 189 nm (NEII) to 201 nm (NEIII) and 205 nm after solidification. The release studies in vitro showed sustained release behavior of the nanocapsules were observed with the increase of the number of deposition layers, implying a good coating effect. The sunscreen nanocapsules could control less than 50% the release of EHA after crosslinking of calcium chloride and sodium alginate, which also could effectively avoid the stimulation of the sun protection agent on the skin.
Collapse
|
7
|
Effect of self-diverting acid viscosity and the chemical structure of coal under different acid environment. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Dinache A, Pascu ML, Smarandache A. Spectral Properties of Foams and Emulsions. Molecules 2021; 26:7704. [PMID: 34946785 PMCID: PMC8707813 DOI: 10.3390/molecules26247704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The optical and spectral properties of foams and emulsions provide information about their micro-/nanostructures, chemical and time stability and molecular data of their components. Foams and emulsions are collections of different kinds of bubbles or drops with particular properties. A summary of various surfactant and emulsifier types is performed here, as well as an overview of methods for producing foams and emulsions. Absorption, reflectance, and vibrational spectroscopy (Fourier Transform Infrared spectroscopy-FTIR, Raman spectroscopy) studies are detailed in connection with the spectral characterization techniques of colloidal systems. Diffusing Wave Spectroscopy (DWS) data for foams and emulsions are likewise introduced. The utility of spectroscopic approaches has grown as processing power and analysis capabilities have improved. In addition, lasers offer advantages due to the specific properties of the emitted beams which allow focusing on very small volumes and enable accurate, fast, and high spatial resolution sample characterization. Emulsions and foams provide exceptional sensitive bases for measuring low concentrations of molecules down to the level of traces using spectroscopy techniques, thus opening new horizons in microfluidics.
Collapse
Affiliation(s)
- Andra Dinache
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
| | - Mihail-Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
| |
Collapse
|
9
|
Ye Z, Wu Z, Jayaraman A. Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular Solutions. JACS AU 2021; 1:1925-1936. [PMID: 34841410 PMCID: PMC8611670 DOI: 10.1021/jacsau.1c00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 05/25/2023]
Abstract
In this paper we present the development and validation of the "Computational Reverse-Engineering Analysis for Scattering Experiments" (CREASE) method for analyzing scattering results from vesicle structures that are commonly found upon assembly of synthetic, biomimetic, or bioderived amphiphilic copolymers in solution. The two-step CREASE method takes the amphiphilic polymer chemistry and small-angle scattering intensity profile, I exp(q), as input and determines the vesicles' structural features on multiple length scales ranging from assembled vesicle wall's individual layer thicknesses to the monomer-level packing and distribution of polymer conformations. In the first step of CREASE, a genetic algorithm (GA) is used to determine the relevant vesicle dimensions from the input macromolecular solution information and I exp(q) by identifying the structure whose computed scattering profile best matches the input I exp(q). Then in the second step, the GA-determined dimensions are used for molecular reconstruction of the vesicle structure. To validate CREASE for vesicles, we test CREASE on input scattering intensity profiles generated mathematically (termed as in silico I exp(q) vs q) from a variety of vesicle sizes with known dimensions. We also test CREASE on in silico I exp(q) vs q generated from vesicles with dispersity in all relevant dimensions, resembling real experiments. After successful validation of CREASE, we compare the CREASE-determined dimensions against those obtained from the traditional approach of fitting the scattering intensity profile to relevant analytical model in SASVIEW package. We show that CREASE performs better than or as well as the core-multishell analytical model's fitting in SASVIEW in determining vesicle dimensions with dispersity. We also show that CREASE provides structural information beyond those possible from traditional scattering analysis using the core-multishell model, such as the distribution of solvophilic monomers between the vesicle wall's inner and outer layers in the vesicle wall and the chain-level packing within each vesicle layer.
Collapse
Affiliation(s)
- Ziyu Ye
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Zijie Wu
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Colburn
Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
On the important transition of sugar-based surfactant as a microreactor for C-S coupling in water: From micelle to vesicle. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants. Adv Colloid Interface Sci 2021; 297:102528. [PMID: 34655932 DOI: 10.1016/j.cis.2021.102528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022]
Abstract
Betaines are a key class of zwitterionic surfactant that exhibit particularly favorable properties, making them indispensable in modern formulation. Due to their composition, betaines are readily biodegradable, mild on the skin and exhibit some antimicrobial activity. Vital to their function, these surfactants self-assemble into diverse micellar geometries, some of which contribute to increased solution viscosity, and their surface activity results in strong detergency and foaming. As such, their behavior has been exploited in various applications from personal care (including shampoos and liquid soaps) to specific industrial fields (such as enhanced oil recovery). This review aims to inform the reader of the diverse range of different betaine and betaine-like surfactants that have been actively researched over the past three decades. Synthesis as well as both chemical and physical characterization of betaine surfactants are discussed, including small-angle scattering studies that indicate self-assembly structures and rheological data that demonstrates texture and flow. Stimulus responsive systems and exotic betaine analogs with enhanced functionality are also covered. Crucially, the connection between surfactant molecular architecture and function are highlighted, exemplifying precisely why zwitterionic betaine and related surfactants are so uniquely functional.
Collapse
|
12
|
Monteiro MJ, Cunningham MF. Polymer Colloids: Synthesis Fundamentals to Applications. Biomacromolecules 2021; 21:4377-4378. [PMID: 33161722 DOI: 10.1021/acs.biomac.0c01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This special issue of Biomacromolecules highlights research from The International Polymer Colloid Group (IPCG), which was founded in 1972 as a forum for the exchange of ideas and emerging research activities for scientists and engineers from both academia and industry who study or use polymer colloids. The increasing relevance of polymeric structures with colloidal dimensions to biomacromolecules research provided the impetus for organizing this special issue. The IPCG is composed of over 120 researchers from over 20 countries who are elected to membership. Activities comprise annual symposia including a biennial International Polymer Colloid Group Research Conference and a semiannual newsletter that incorporates a summary of recent (including unpublished) research results from our members.
Collapse
Affiliation(s)
- Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kinston, Ontario, Canada K7L 3N6
| |
Collapse
|
13
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Pabois O, Ziolek RM, Lorenz CD, Prévost S, Mahmoudi N, Skoda MWA, Welbourn RJL, Valero M, Harvey RD, Grundy MML, Wilde PJ, Grillo I, Gerelli Y, Dreiss CA. Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. J Colloid Interface Sci 2020; 587:522-537. [PMID: 33189321 DOI: 10.1016/j.jcis.2020.10.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
Abstract
HYPOTHESES Bile salts (BS) are biosurfactants released into the small intestine, which play key and contrasting roles in lipid digestion: they adsorb at interfaces and promote the adsorption of digestive enzymes onto fat droplets, while they also remove lipolysis products from that interface, solubilising them into mixed micelles. Small architectural variations on their chemical structure, specifically their bile acid moiety, are hypothesised to underlie these conflicting functionalities, which should be reflected in different aggregation and solubilisation behaviour. EXPERIMENTS The micellisation of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ by one hydroxyl group on the bile acid moiety, was assessed by pyrene fluorescence spectroscopy, and the morphology of aggregates formed in the absence and presence of fatty acids (FA) and monoacylglycerols (MAG) - typical lipolysis products - was resolved by small-angle X-ray/neutron scattering (SAXS, SANS) and molecular dynamics simulations. The solubilisation by BS of triacylglycerol-incorporating liposomes - mimicking ingested lipids - was studied by neutron reflectometry and SANS. FINDINGS Our results demonstrate that BS micelles exhibit an ellipsoidal shape. NaTDC displays a lower critical micellar concentration and forms larger and more spherical aggregates than NaTC. Similar observations were made for BS micelles mixed with FA and MAG. Structural studies with liposomes show that the addition of BS induces their solubilisation into mixed micelles, with NaTDC displaying a higher solubilising capacity.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Robert M Ziolek
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | | | - Najet Mahmoudi
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Rebecca J L Welbourn
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, Salamanca 37007, Spain.
| | - Richard D Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria.
| | | | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble 38000, France; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|