1
|
Park K. PLGA-based long-acting injectable (LAI) formulations. J Control Release 2025; 382:113758. [PMID: 40268201 PMCID: PMC12065662 DOI: 10.1016/j.jconrel.2025.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long-acting injectable (LAI) formulations, which deliver drugs over weeks or months, have been in use for more than three decades. Most clinically approved LAI products are formulated using poly(lactide-co-glycolide) (PLGA) polymers. Historically, the development of PLGA-based LAI formulations has relied predominantly on trial-and-error methods, primarily due to a limited understanding of the complex factors involved in LAI formulations and insufficient analytical techniques available for characterizing individual PLGA polymers of the prepared formulations. This article offers a personal perspective on recent advancements in characterization methods for PLGA polymers within final formulations, i.e., products, as well as enhanced insights into the drug release mechanisms associated with LAI products. With a deeper understanding of PLGA polymer properties and drug release mechanisms, the formulation development process can transition from traditional trial-and-error practices to a more systematic Quality by Design (QbD) approach. Additionally, this article explores the emerging role of artificial intelligence (AI) in formulation science and its potential, when applied carefully, to enhance the future development of PLGA-based LAI formulations.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Weldon School of Biomedical Engineering and Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, West Lafayette, IN 47906, USA.
| |
Collapse
|
2
|
Garner J, Skidmore S, Overdorf G, Hadar J, Park H, Park K, Wang Y, Jhon YK, Smith WC, Zhang D, Zou Y. A New Analytical Method for Quantifying Acid-End-Cap PLGA in Sub-Milligram Quantities. Mol Pharm 2025; 22:446-458. [PMID: 39566092 DOI: 10.1021/acs.molpharmaceut.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Characterization of PLGA polymers used in FDA-approved drug products is critical for quality control and qualitative/quantitative (Q1/Q2) evaluation of potential generic formulations. Various techniques have been developed and used to characterize the molecular properties of PLGA polymers, such as molecular weight, molecular composition, and molecular structure. Commonly used techniques include gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), semisolvent methods, and GPC-based intrinsic viscosity measurement. It is noted that the existing analytical methods may not be able to separate and quantify PLGA polymers when used as a mixture in a drug product (e.g., Durysta and Ozurdex). In particular, one assay method still lacking is quantitating the PLGA polymer with acid-end-cap (PLGA-A) in the mixture containing PLGA with ester-end-cap (PLGA-E), especially when the sample quantity is below the submilligram level. The total PLGA quantities available in Durysta and Ozurdex formulations are too small (<1 mg) to use existing assay methods to quantify the PLGA-A content. A new assay method was developed to quantitate PLGA-A in the mixture with PLGA-E. The acid end-cap was modified with pyrene methylamine (a UV dye) to enhance the signal and compared with the total PLGA quantity measured with the refractive index (RI) after a sample was run through a GPC. This GPC-UV/RI approach is based on measuring the total acid number (TAN) of PLGA-A and converting it to the PLGA-A quantity to compare with the total PLGA. Unlike conventional methods of measuring TAN, the GPC-UV/RI methods enables TAN measurements of submilligram PLGA quantities. Application of this method to Ozurdex-similar samples showed the expected acid:ester ratio of PLGAs. This new approach provides another powerful tool for characterizing PLGA polymers in FDA-approved drug products. This is especially significant considering that the PLGAs of commercial products are likely to have molecular properties different from those of the raw PLGAs before going through the manufacturing process.
Collapse
Affiliation(s)
- John Garner
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Sarah Skidmore
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Gary Overdorf
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Justin Hadar
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Haesun Park
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
| | - Kinam Park
- Akina, Inc., 3495 Kent Avenue, West Lafayette, Indiana 47906, United States
- Biomedical Engineering and Pharmaceutics, Purdue University, 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Yan Wang
- Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Young Kuk Jhon
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - William C Smith
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Deyi Zhang
- Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Yuan Zou
- Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| |
Collapse
|
3
|
Liang D, Walker J, Schwendeman PS, Chandrashekar A, Ackermann R, Olsen KF, Beck-Broichsitter M, Schwendeman SP. Effect of PLGA raw materials on in vitro and in vivo performance of drug-loaded microspheres. Drug Deliv Transl Res 2025; 15:185-202. [PMID: 38643259 DOI: 10.1007/s13346-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/22/2024]
Abstract
Poly(lactide-co-glycolide) and poly(lactic-co-glycolic acids) (PLGAs) play a critical role in the development of commercial long-acting injectable microsphere formulations. However, very little information is available describing the impact of PLGA manufacturer and monomer distribution along the polymer chain (e.g., glycolic blockiness (Rc) and average lactic block length (LL)) on the degradation and release behavior of PLGA drug carriers in vitro and in vivo. Here, we compared the in vitro and in vivo performance of (a) four leuprolide-loaded microsphere formulations prepared from similar low-molecular-weight acid-capped PLGAs (10-14 kD, i.e., Expansorb® DLG 75-2A, Purasorb® PDLG 7502A, Resomer® RG 752H and Wako® 7515) and (b) two triamcinolone acetonide-loaded (Tr-A) microsphere formulations from similar medium-molecular-weight ester-capped PLGAs (i.e., Expansorb® DLG 75-4E and Resomer® RG 753S). Lupron Depot® and Zilretta® were used as reference commercial products. The six 75/25 PLGAs displayed block lengths that were either above or below values expected from a random copolymer. Drug release and polymer degradation were monitored simultaneously in vitro and in vivo using a cage implant system. The four leuprolide-loaded formulations showed similar release and degradation patterns with some notable differences between each other. Microspheres from the Expansorb® polymer displayed lower LL and higher Rc relative to the other 3 PLGA 75/25 microspheres, and likewise exhibited distinct peptide release and degradation behavior compared to the other 3 formulations. For each formulation, leuprolide release was erosion-controlled up to about 30% release after the initial burst followed by a faster than erosion release phase. In vitro release was similar as that in vivo over the first phase but notably different from the latter release phase, particularly for the most blocky Expansorb® formulation. The Purasorb® and Wako® formulations displayed highly similar performance in release, degradation, and erosion analysis. By contrast, the two ester-capped Expansorb® DLG 75-4E and Resomer® RG 753S used to prepare Tr-A microspheres shared essentially identical LL and higher Rc and behaved similarly although the Expansorb® degraded and released the steroid faster in vivo, suggestive of other factors responsible (e.g., residual monomer). The in vivo release performance for both drugs from the six microsphere formulations was similar to that of the commercial reference products. In summary, this work details information on comparing the similarities and differences in in vitro and in vivo performance of drug-loaded microspheres as a function of manufacturing and microstructural variables of different types of PLGA raw materials utilized and could, therefore, be meaningful in guiding the source control during development and manufacturing of PLGA microsphere-based drug products. Future work will expand the analysis to include a broader range of LL and higher Rc, and add additional important formulation metrics (e.g., thermal analysis, and residual monomer, moisture, and organic solvent levels).
Collapse
Affiliation(s)
- Desheng Liang
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Peter S Schwendeman
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Karl F Olsen
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Moritz Beck-Broichsitter
- MilliporeSigma a Business of Merck Life Science KGaA, Frankfurter Strasse 250, D-64293, Darmstadt, Germany
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Serizawa M, Reekers J, van Delft P, van Bruijnsvoort M, Schoenmakers PJ, Gargano AFG. Functionality-type and chemical-composition separation of poly(lactide-co-glycolide) using gradient elution normal-phase liquid chromatography with basic and acidic additives. J Chromatogr A 2024; 1730:465137. [PMID: 38996514 DOI: 10.1016/j.chroma.2024.465137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
End groups of poly(Lactide-co-glycolide) (PLGA) play an important role in determining the properties of polymers for use in drug delivery systems. For instance, it has been reported that the encapsulation efficiency in PLGA microspheres varies significantly between ester-terminated and acid-terminated PLGA. More importantly, the in-vivo degradation time of such polymer excipients is influenced by the functional end-group of the copolymer used. The end group distribution in PLGA polymers has been studied using electrospray and matrix-assisted laser-desorption/ionization - high-resolution mass spectrometry. In both cases, the application of these methods is typically limited to PLGA having a molecular weight of up to 4 kDa. 13Carbon-nuclear-magnetic-resonance has also been reported as a method to differentiate and quantify PLGA end groups with a molecular weight up to 136 kDa. However, reported NMR methods take over 12 h per sample, limiting throughput.Cryoprobe NMR can reduce the time required for the process, however such NMR equipment is costly, which makes it unsuitable for the quality control of PLGA. Here, we present a normal-phase liquid chromatography method capable of resolving functionality type distribution (FTD) and, partially, chemical composition distribution (CCD) in commercial PLGA polymers obtained from ring opening polymerization. This method can separate PLGA polymers with a molecular weight of up to 183.0 kDa while also enabling the simultaneous separation of the difference of Lactic acid (LA)/Glycolic acid (GA) ratios. To achieve this, a cross-linked diol column was used with a ternary gradient from HEX to 0.1 % v/v TEA in EA to 0.1 % v/v FA in THF to allow first for the elution of mono-ester terminated PLGA, followed by the di-acid terminated. In addition, a separation of ester-terminated PLGA in the difference of the LA/GA ratio was achieved. This method is expected to aid in understanding the correlation between PLGA's FTD, CCD, and physical properties, facilitating product development and quality control.
Collapse
Affiliation(s)
- Masashi Serizawa
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Material Characterization laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan.
| | - Jeroen Reekers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | | | | | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Andrea F G Gargano
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Sheikhi M, Nemayandeh N, Shirangi M. Peptide Acylation in Aliphatic Polyesters: a Review of Mechanisms and Inhibition Strategies. Pharm Res 2024; 41:765-778. [PMID: 38504074 DOI: 10.1007/s11095-024-03682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Biodegradable polyesters are widely employed in the development of controlled release systems for peptide drugs. However, one of the challenges in developing a polyester-based delivery system for peptides is the acylation reaction between peptides and polymers. Peptide acylation is an important factor that affects formulation stability and can occur during storage, in vitro release, and after drug administration. This review focuses on the mechanisms and parameters that influence the rate of peptide acylation within polyesters. Furthermore, it discusses reported strategies to minimize the acylation reaction.
Collapse
Affiliation(s)
- Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran
| | - Nasrin Nemayandeh
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Science Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Liang D, Frank S, Schwendeman SP. Aqueous remote loading of model cationic peptides in uncapped poly(lactide-co-glycolide) microspheres for long-term controlled release. Drug Deliv Transl Res 2024; 14:696-704. [PMID: 38038895 DOI: 10.1007/s13346-023-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 12/02/2023]
Abstract
Remote loading microencapsulation of peptides into polymer microspheres without organic solvent represents a promising alternative to develop long-acting release depots relative to conventional encapsulation methods. Here, we formulated drug-free microspheres from two kinds of uncapped poly(lactide-co-glycolides) (PLGAs), i.e., ring-opening polymerized Expansorb® DLG 50-2A (50/50, 11.2 kDa) and Expansorb® DLG 75-2A (75/25, 9.0 kDa), and evaluated their potential capacity to remote-load and control the release of two model peptides, leuprolide and octreotide. Degradation and erosion kinetics, release mechanism, and storage stability was also assessed. As control formulations, peptide was loaded in the same PLGA 75/25 polymer by the conventional double emulsion-solvent evaporation method (W/O/W) and remote loaded in polycondensation poly(lactic-co-glycolic acid) 75/25 (Wako 7515, 14.3 kDa). Loading content of 6.7%-8.9% w/w (~ 67%-89% encapsulation efficiency (EE)) was attained for octreotide, and that of 9.5% w/w loading (~ 95% EE) was observed for leuprolide, by the remote loading paradigm. Octreotide and leuprolide were both slowly and continuously released in vitro from the remote-loaded Expansorb® DLG 75-2A MPs for over 56 days, which was highly similar to that observed from traditionally-loaded formulations by W/O/W (8.8% loading, 52.8% EE). The faster release kinetics was observed for the faster degrading PLGA 50/50 remote-loaded Expansorb® DLG 50-2A MPs relative to microspheres from the PLGA 75/25 Expansorb® DLG 75-2A. Despite slight differences in degradation kinetics, the release mechanism of octreotide from the Expansorb® microspheres, whether remote loaded or by W/O/W, was identical as determined by release vs. mass loss curves. Octreotide acylation was also minimal (< ~ 10%) for this polymer. Finally, drug-free Expansorb® DLG 75-2A MPs displayed excellent storage stability over 3 months. Overall, this work offers support for the use of ring-opening Expansorb® PLGA-based microspheres to remote load peptides to create simple and effective long-acting release depots.
Collapse
Affiliation(s)
- Desheng Liang
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Simon Frank
- Merck Life Science KGaA, Darmstadt, Germany, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Costello MA, Liu J, Kuehster L, Wang Y, Qin B, Xu X, Li Q, Smith WC, Lynd NA, Zhang F. Role of PLGA Variability in Controlled Drug Release from Dexamethasone Intravitreal Implants. Mol Pharm 2023; 20:6330-6344. [PMID: 37955890 DOI: 10.1021/acs.molpharmaceut.3c00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Long-acting injectable formulations based on poly(lactide-co-glycolide) (PLGA) have been commercialized for over 30 years in at least 20 FDA-approved products. These formulations offer several advantages, including reduced dosing frequency, improved patient compliance, and maintenance of therapeutic levels of drug. Despite extensive studies, the inherent complexity of the PLGA copolymer still poses significant challenges associated with the development of generic formulations having drug release profiles equivalent to those of the reference listed drugs. In addition, small changes to PLGA physicochemical properties or the drug product manufacturing process can have a major impact on the drug release profile of these long-acting formulations. This work seeks to better understand how variability in the physicochemical properties of similar PLGAs affects drug release from PLGA solid implants using Ozurdex (dexamethasone intravitreal implant) as the model system. Four 50:50, acid-terminated PLGAs of similar molecular weights were used to prepare four dexamethasone intravitreal implants structurally equivalent to Ozurdex. The PLGAs were extensively characterized by using a variety of analytical techniques prior to implant manufacture using a continuous, hot-melt extrusion process. In vitro release testing of the four structurally equivalent implants was performed in both normal saline and phosphate-buffered saline (PBS), yielding drastically different results between the two methods. In normal saline, no differences in the release profiles were observed. In PBS, the drug release profiles were sensitive to small changes in the residual monomer content, carboxylic acid end group content, and blockiness of the polymers. This finding further underscores the need for a physiologically relevant in vitro release testing method as part of a robust quality control strategy for PLGA-based solid implant formulations.
Collapse
Affiliation(s)
- Mark A Costello
- College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Liu
- College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, University of Texas at Austin, Austin, Texas 78712, United States
| | - Louise Kuehster
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yan Wang
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Bin Qin
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Xiaoming Xu
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Qi Li
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - William C Smith
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Feng Zhang
- College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Wang S, Downing G, Olsen KF, Sawyer TK, Cone RD, Schwendeman SP. Aqueous remote loading of setmelanotide in poly(lactic-co-glycolic acid) microspheres for long-term obesity treatment. J Control Release 2023; 364:589-600. [PMID: 37678438 DOI: 10.1016/j.jconrel.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Setmelanotide (Imcivree™) was developed as a daily injectable therapeutic peptide for the treatment of rare forms of syndromic obesity, such as POMC deficiency and leptin receptor deficiency. The important option of poly(lactic-co-glycolic acid) (PLGA) controlled release microspheres has become more attractive for this class of drugs upon the discovery that net positively charged peptides can be remote-loaded rapidly from aqueous peptide solution into blank microspheres at high loading and encapsulation efficiency. Here we sought to remote-load setmelanotide in PLGA microspheres and examine its potential for long-term controlled release and body weight control. The influence of PLGA microsphere porosity was investigated with respect to morphology, drug loading, and in vitro release profiles. Increased density of the microspheres inhibited the progress of encapsulation of the dicationic peptide. A diet-induced obese murine model was then used to determine the pharmacokinetic profile and to evaluate long-term efficacy of an optimal formulation. Remote loaded PLGA formulations encapsulated setmelanotide as high as ∼63% (∼6.3% w/w loading) and exhibited slow and continuous peptide release over ∼6 weeks in vitro largely independent of microsphere porosity. The obtained in vivo release pattern from deconvolution of the pharmacokinetics after subcutaneous microsphere injection was consistent with the in vitro release profile but with a lower initial burst release and overall slightly faster release rate. After a single injection of remote-loaded setmelanotide, continuous long-term inhibition of food intake and body weight control was observed over 17 and 30 days, respectively. The improvement in body weight control over drug-free microsphere vehicle-treated control groups matched the observed PK profile. This study provides the first report of long-acting release formulation for 1-month controlled release of setmelanotide and body weight control in a diet induced obese murine model, and supports the further development of long-acting treatment options for obese patients.
Collapse
Affiliation(s)
- Shuying Wang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karl F Olsen
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Yue W, Shen J. Local Delivery Strategies for Peptides and Proteins into the CNS: Status Quo, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:810. [PMID: 37375758 DOI: 10.3390/ph16060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decades, peptides and proteins have been increasingly important in the treatment of various human diseases and conditions owing to their specificity, potency, and minimized off-target toxicity. However, the existence of the practically impermeable blood brain barrier (BBB) limits the entry of macromolecular therapeutics into the central nervous systems (CNS). Consequently, clinical translation of peptide/protein therapeutics for the treatment of CNS diseases has been limited. Over the past decades, developing effective delivery strategies for peptides and proteins has gained extensive attention, in particular with localized delivery strategies, due to the fact that they are capable of circumventing the physiological barrier to directly introduce macromolecular therapeutics into the CNS to improve therapeutic effects and reduce systemic side effects. Here, we discuss various local administration and formulation strategies that have shown successes in the treatment of CNS diseases using peptide/protein therapeutics. Lastly, we discuss challenges and future perspectives of these approaches.
Collapse
Affiliation(s)
- Weizhou Yue
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
10
|
Yu J, Wang X, Ren F, Zhang J, Shen J, Liu H, Zhou J. An easy and straightforward synthesized nano calcium phosphate for highly capture of multiply phosphorylated peptides. Anal Chim Acta 2023; 1257:341150. [PMID: 37062565 DOI: 10.1016/j.aca.2023.341150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/18/2023]
Abstract
Multisite phosphorylation of proteins regulates various cellular life activities, however, the capture of low abundance multi-phosphopeptides from biosamples and identification of phosphorylation sites are largely limited due to the limited enrichment materials and their unclear interactions with multi-phosphopeptides. Here we propose using two cheap raw materials (CaCl2·2H2O and Na2HPO4·12H2O) in 10 min at room temperature to synthesize the structurally simple Nanometric Calcium Phosphate (CaP) to resolve this challenge. The current results showed that the "simple" CaP has good selection specificity, high sensitivity and stability for multi-phosphopeptides enrichment and the identification of phosphorylation sites, which facilitate the popularization and application of phosphoproteomics research. Further, the interaction of CaP and multi-phosphopeptides were qualitatively characterized at the molecular/atomic level and the high affinity between them was quantified by the isothermal titration microcalorimeter based on the laws of thermodynamics. The results indicated that the interaction was a spontaneous (ΔG < 0) exothermic reaction with enthalpy reduction (ΔH < 0) and driven mainly by hydrogen bond and electrostatic interaction process.
Collapse
Affiliation(s)
- Jialin Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xinhui Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Fangkun Ren
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- College of Chemistry and Materials Science, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Hailong Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Jiahong Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Meng T, Zheng J, Chen M, Zhao Y, Sudarjat H, M.R. AA, Kulkarni V, Oh Y, Xia S, Ding Z, Han H, Anders N, Rudek MA, Chow W, Stark W, Ensign LM, Hanes J, Xu Q. Six-month effective treatment of corneal graft rejection. SCIENCE ADVANCES 2023; 9:eadf4608. [PMID: 36947612 PMCID: PMC10032610 DOI: 10.1126/sciadv.adf4608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Topical corticosteroid eye drop is the mainstay for preventing and treating corneal graft rejection. While the frequent topical corticosteroid use is associated with risk of intraocular pressure (IOP) elevation and poor patient compliance that leads to graft failure and the requirement for a repeated, high-risk corneal transplantation. Here, we developed dexamethasone sodium phosphate (DSP)-loaded dicarboxyl-terminated poly(lactic acid) nanoparticle (PLA DSP-NP) formulations with relatively high drug loading (8 to 10 weight %) and 6 months of sustained intraocular DSP delivery in rats with a single dosing. PLA DSP-NP successfully reversed early signs of corneal rejection, leading to rat corneal graft survival for at least 6 months. Efficacious PLA DSP-NP doses did not affect IOP and showed no signs of ocular toxicity in rats for up to 6 months. Subconjunctival injection of DSP-NP is a promising approach for safely preventing and treating corneal graft rejection with the potential for improved patient adherence.
Collapse
Affiliation(s)
- Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinhua Zheng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Min Chen
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266073, China
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Yang Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hadi Sudarjat
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aji Alex M.R.
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vineet Kulkarni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yumin Oh
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Shiyu Xia
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Zheng Ding
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Hyounkoo Han
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Nicole Anders
- Department of Medicine, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michelle A. Rudek
- Department of Medicine, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Woon Chow
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Walter Stark
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Laura M. Ensign
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering and Institute for Structural Biology, Drug Discovery and Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
12
|
Li M, Guo Q, Lin Y, Bao H, Miao S. Recent Progress in Microencapsulation of Active Peptides-Wall Material, Preparation, and Application: A Review. Foods 2023; 12:foods12040896. [PMID: 36832971 PMCID: PMC9956665 DOI: 10.3390/foods12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.
Collapse
Affiliation(s)
- Mengjie Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
| | - Hairong Bao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (H.B.); (S.M.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
- Correspondence: (H.B.); (S.M.)
| |
Collapse
|
13
|
Giles MB, Hong JKY, Liu Y, Tang J, Li T, Beig A, Schwendeman A, Schwendeman SP. Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat Commun 2022; 13:3282. [PMID: 35676271 PMCID: PMC9177552 DOI: 10.1038/s41467-022-30813-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) long-acting release depots are effective for extending the duration of action of peptide drugs. We describe efficient organic-solvent-free remote encapsulation based on the capacity of common uncapped PLGA to bind and absorb into the polymer phase net positively charged peptides from aqueous solution after short exposure at modest temperature. Leuprolide encapsulated by this approach in low-molecular-weight PLGA 75/25 microspheres slowly and continuously released peptide for over 56 days in vitro and suppressed testosterone production in rats in an equivalent manner as the 1-month Lupron Depot®. The technique is generalizable to encapsulate a number of net cationic peptides of various size, including octreotide, with competitive loading and encapsulation efficiencies to traditional methods. In certain cases, in vitro and in vivo performance of remote-loaded PLGA microspheres exceeded that relative to marketed products. Remote absorption encapsulation further removes the need for a critical organic solvent removal step after encapsulation, allowing for simple and cost-effective sterilization of the drug-free microspheres before encapsulation of the peptide.
Collapse
Affiliation(s)
- Morgan B Giles
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yayuan Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tinghui Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Muddineti OS, Omri A. Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opin Drug Deliv 2022; 19:559-576. [PMID: 35534912 DOI: 10.1080/17425247.2022.2075845] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Poly (lactic-co-glycolic acid) (PLGA) has been used in many long-acting drug formulations, which have been approved by the US Food and Drug Administration (FDA). PLGA has unique physicochemical properties, which results in complexities in the formulation, characterization, and evaluation of generic products. To address the challenges of generic development of PLGA-based products, the FDA has established an extensive research program to investigate novel methods and tools to aid product development and regulatory review. AREAS COVERED This review article intends to provide a comprehensive review on physicochemical properties of PLGA polymer, characterization, formulation, and analytical aspects, manufacturing conditions on product performance, in-vitro release testing, and bioequivalence. Current research on formulation development as per QbD in vitro release testing methods, regulatory research outcomes, and bioequivalence. EXPERT OPINION The development of PLGA based long-acting injectables is promising and challenging when considering the numerous interrelated delivery-related factors. Achieving a successful formulation requires a thorough understanding of the critical interactions between polymer/drug properties, release profiles over time, up-to-date knowledge on regulatory guidance, and elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Formulation Research & Development, Vimta Labs Limited, Plot No.5, M N Park, Genome Valley, Shameerpet, Hyderabad, Telangana, 500101, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
15
|
PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int J Mol Sci 2021; 22:ijms22168884. [PMID: 34445587 PMCID: PMC8396256 DOI: 10.3390/ijms22168884] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible to harsh processing conditions associated with microsphere fabrication methods, including exposure to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying techniques. The purpose of this review is to provide an overview of the formulation attributes and conventional manufacturing techniques of LAI microspheres that are currently in clinical use for protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations are deliberated.
Collapse
|