1
|
More SH, Dorosh T, Runser JY, Bigo-Simon A, Schurhammer R, Ball V, Jacomine L, Schmutz M, Chaumont A, Schaaf P, Jierry L. Influence of peptide chirality on their protein-triggered supramolecular hydrogelation. Faraday Discuss 2025. [PMID: 40372205 DOI: 10.1039/d5fd00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Many articles describe the use of enzymes to induce the formation of a supramolecular hydrogel. These enzymes catalyze the transformation of water-soluble precursors, often short peptides, into hydrogelators. The use of non-enzymatic proteins to induce or stabilize peptide self-assembly is a rarely reported phenomenon, which raises fundamental questions: how can a protein induce peptide self-assembly? How is the peptide recognized and how does it, or the peptide assembly, interact with the protein? The heptapeptide Fmoc-GFFYE-NH-(CH2)2-s-s-(CH2)2-NH-CO-(CH2)2-CO-EE-OH, called L-1 (L = natural chiral amino acids), is a water-soluble compound leading to an increasingly viscous solution over time due to the formation of nanofibers, but does not result in hydrogel (at least not within 3 months). When bovine serum albumin (BSA) is added to a freshly prepared solution of L-1, a hydrogel is obtained in less than 10 min. The variation in the L-1/BSA ratio has an impact on the gelation rate and the mechanical properties of the resulting hydrogel. Thus, the protein appears to act as (i) a catalyst and (ii) a cross-linking point. Strikingly, if the enantiomer D-1 (D = unnatural chiral amino acids) is used instead of L-1, the mixture with BSA remains liquid and non-viscous. Similar behavior is also observed for other proteins. Spectroscopic analyses (CD, fluorescence) and electronic microscopy images confirm that the L-1 peptide self-assembles in nanofibers of 10 nm diameter through β-sheet organization, which is not the case for the peptide D-1. A molecular dynamics study shows that BSA is capable of interacting with both enantiomer peptides L-1 and D-1. However, interaction with L-1 tends to unfold the peptide backbone, making the interaction with the protein more stable and promoting the assembly of L-1 peptides. Conversely, the interaction between BSA and D-1 is more dynamic and appears to be less spatially localized on the BSA. Furthermore, in this interaction, the D-1 peptide keeps its globular conformation. These results highlight the impact of a short peptide's chirality on protein-triggered supramolecular hydrogelation.
Collapse
Affiliation(s)
- Shahaji H More
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg Cedex, CS 60026, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Tetiana Dorosh
- Université de Strasbourg, Faculté de Chimie, UMR7140, 1 Rue Blaise Pascal, 67008 Strasbourg Cedex, France.
| | - Jean-Yves Runser
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg Cedex, CS 60026, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Alexis Bigo-Simon
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
| | - Rachel Schurhammer
- Université de Strasbourg, Faculté de Chimie, UMR7140, 1 Rue Blaise Pascal, 67008 Strasbourg Cedex, France.
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg Cedex, CS 60026, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Leandro Jacomine
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
| | - Alain Chaumont
- Université de Strasbourg, Faculté de Chimie, UMR7140, 1 Rue Blaise Pascal, 67008 Strasbourg Cedex, France.
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg Cedex, CS 60026, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 Rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France
| |
Collapse
|
2
|
Wang Y, Liu H, Chu Y, Yang J, Li G, Chen K, Li H. Protein aggregates facilitated by polar aprotic solvents as carriers for enzyme immobilization. Int J Biol Macromol 2025; 307:142164. [PMID: 40096929 DOI: 10.1016/j.ijbiomac.2025.142164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Protein aggregates are extremely useful in fields such as bioseparation, biocatalysis, and bioadhesives. The development and use of protein aggregates, however, are in their infancy. In this study, emerging protein aggregates were developed through protein self-assembly using polar aprotic solvents coupled with halides. The polar aprotic solvent molecules, including dimethyl sulfoxide (DMSO), were inserted into the hydration shell of proteins such as ovalbumin (OVA), bovine serum albumin, and whey protein to partially exchange water molecules via van der Waals and electrostatic interactions to alter the surface polarity of the protein. Then, the halide ions were allowed to bind to proteins via electrostatic interactions and cause the self-assembly of proteins into aggregates. Under optimal conditions, the yield of OVA-DMSO protein aggregates reached 91.2 ± 1.52 %. OVA-DMSO-EDC/NHS-CA showed excellent enzymatic properties, and the production of calcium carbonate reached 7.1 ± 0.4 mg at 37 °C for 10 min. Additionally, other enzymes, such as L-TA, had high activity after being fixed with OVA-DMSO. These innovative protein aggregates are highly valuable for developing biomaterials.
Collapse
Affiliation(s)
- Yitong Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huazong Liu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Chu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiyu Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Pulvirenti A, Boccia AC, Constantin C, Surcel M, Munteanu A, Peteu VE, Neagu M. Single-Component Starch-Based Hydrogels for Therapeutic Delivery. Molecules 2024; 29:5463. [PMID: 39598852 PMCID: PMC11597573 DOI: 10.3390/molecules29225463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogels are interesting materials as delivery systems of various therapeutic agents, mainly due to the water-swollen network and the localized and sustained drug release. Herein, single-component starch-based hydrogels with enhanced degradation rates were produced by applying a facile synthesis and proposed for a novel delivery system of therapeutic molecules. Starch was oxidized with sodium periodate in water and mild conditions to generate aldehyde derivatives that, after a freeze-thaw procedure, were allowed to compact and stable hydrogels. Oxidized starch was also cross-linked with asparagine through a Schiff base reaction to link the active molecule directly to the polysaccharide structure. The materials were structurally and morphologically characterized, and the ability to adsorb and release over time an active molecule was proven by qNMR spectroscopy. The cytotoxicity was evaluated on CAL-27 cell line (oral squamous cell carcinoma). Results indicated that synthesized hydrogels lead to a "frozen proliferative" state on cells due to the swelling capability in the cell medium. This behavior was confirmed by flow cytometry data indicating the hydrogels induced less "early apoptosis" and more "late apoptosis" in the cells, compared to the untreated control. Since the proposed materials are able to control the cell proliferation, they could open a new scenario within the field of precise therapeutic applications.
Collapse
Affiliation(s)
- Alfio Pulvirenti
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta”, C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy;
| | - Antonella Caterina Boccia
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta”, C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy;
| | - Carolina Constantin
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
- Colentina Clinical Hospital, 19-21, Sos Stefan Cel Mare, 020125 Bucharest, Romania
| | - Mihaela Surcel
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| | - Adriana Munteanu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| | - Victor-Eduard Peteu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
- Doctoral School, Politechnica University of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| |
Collapse
|
4
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
5
|
Zhang R, Jia W. Supramolecular self-assembly strategies of natural-based β-lactoglobulin modulating bitter perception of goat milk-derived bioactive peptides. J Dairy Sci 2024; 107:4174-4188. [PMID: 38310962 DOI: 10.3168/jds.2023-24386] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/01/2024] [Indexed: 02/06/2024]
Abstract
Complete self-assembly and reassembly behavior of bitter peptide-protein necessitates multilevel theories that encompass phenomena ranging from the self-assembly of recombinant complex to atomic trajectories. An extension to the level of mechanism method was put forth, involves limited enzymatic digestion and bottom-up proteomics to dissect inherent heterogeneity within β-LG and β-LG-PPGLPDKY complex and uncover conformational and dynamic alterations occurring in specific local regions of the model protein. Bitter peptide PPGLPDKY spontaneously bound to IIAEKTK, IDALNENK, and YLLFCMENSAEPEQSLACQCLVR regions of β-LG in a 1:1 stoichiometric ratio to mask bitterness perception. Molecular dynamic simulation and free energy calculation provided time-varying atomic trajectories of the recombinant complex and found that a peptide was stabilized in the upper region of the hydrophobic cavity with the binding free energy of -30.56 kJ mol-1 through 4 hydrogen bonds (Glu74, Glu55, Lys69, and Ser116) and hydrophobic interactions (Asn88, Asn90, and Glu112). Current research aims to provide valuable physical insights into the macroscopic self-assembly behavior between proteins and bitter peptides, and the meticulous design of highly acceptable taste characteristics in goat milk products.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
6
|
Nie J, Sun Y, Cheng X, Wen G, Liu X, Cheng M, Zhao J, Li W. Plant Protein-Peptide Supramolecular Polymers with Reliable Tissue Adhesion for Surgical Sealing. Adv Healthc Mater 2023; 12:e2203301. [PMID: 36960795 DOI: 10.1002/adhm.202203301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The fusion of protein science and peptide science opens up new frontiers in creating innovative biomaterials. Herein, a new kind of adhesive soft materials based on a natural occurring plant protein and short peptides via a simple co-assembly route are explored. The hydrophobic zein is supercharged by sodium dodecyl sulfate to form a stable protein colloid, which is intended to interact with charge-complementary short peptides via multivalent ionic and hydrogen bonds, forming adhesive materials at macroscopic level. The adhesion performance of the resulting soft materials can be fine-manipulated by customizing the peptide sequences. The adhesive materials can resist over 78 cmH2 O of bursting pressure, which is high enough to meet the sealing requirements of dural defect. Dural sealing and repairing capability of the protein-peptide biomaterials are further identified in rat and rabbit models. In vitro and in vivo assays demonstrate that the protein-peptide adhesive shows excellent anti-swelling property, low cell cytotoxicity, hemocompatibility, and inflammation response. In particular, the protein-peptide supramolecular biomaterials can in vivo dissociate and degrade within two weeks, which can well match with the time-window of the dural repairing. This work underscores the versatility and availability of the supramolecular toolbox in the easy-to-implement fabrication of protein-peptide biomaterials.
Collapse
Affiliation(s)
- Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Yingchuan Sun
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Meng Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Sharma P, Roy S. Designing ECM-inspired supramolecular scaffolds by utilizing the interactions between a minimalistic neuroactive peptide and heparin. NANOSCALE 2023; 15:7537-7558. [PMID: 37022122 DOI: 10.1039/d2nr06221f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Short bioactive peptide-based supramolecular hydrogels are emerging as interesting candidates for developing scaffolds for tissue engineering applications. However, proteins and peptides represent only a single class of molecules present in the native ECM, thus, recapitulating the complete ECM microenvironment via only peptide-based biomaterials is extremely challenging. In this direction, complex multicomponent-based biomaterials have started gaining importance for achieving the biofunctional complexity and structural hierarchy of the native ECM. Sugar-peptide complexes can be explored in this direction as they provide essential biological signaling required for cellular growth and survival in vivo. In this direction, we explored the fabrication of an advanced scaffold by employing heparin and short bioactive peptide interactions at the molecular level. Interestingly, the addition of heparin into the peptide has significantly modulated the supramolecular organization, nanofibrous morphology and the mechanical properties of the scaffold. Additionally, the combined hydrogels demonstrated superior biocompatibility as compared to the peptide counterpart at certain ratios. These newly developed scaffolds were also observed to be stable under 3-D cell culture conditions and supported cellular adhesion and proliferation. Most importantly, the inflammatory response was also minimized in the case of combined hydrogels as compared to heparin. We expect that this approach of using simple non-covalent interactions between the ECM-inspired small molecules to fabricate biomaterials with improved mechanical and biological properties could advance the current knowledge on designing ECM mimetic biomaterials. Such an attempt would create a novel, adaptable and simplistic bottom-up strategy for the invention of new and more complex biomaterials of ECM origin with advanced functions.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
8
|
Pal VK, Roy S. Cooperative Calcium Phosphate Deposition on Collagen-Inspired Short Peptide Nanofibers for Application in Bone Tissue Engineering. Biomacromolecules 2023; 24:807-824. [PMID: 36649490 DOI: 10.1021/acs.biomac.2c01262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent years, immense attention has been devoted over the production of osteoinductive materials. To this direction, collagen has a dominant role in developing hard tissues and plays a crucial role in the biomineralization of these tissues. Here, we demonstrated for the first time the potential of the shortest molecular pentapeptide domain inspired from collagen toward mineralizing hydroxyapatite on peptide fibers to develop bone-filling material. Our simplistic approach adapted the easy and facile route of introducing the metal ions onto the peptide nanofibers, displaying adsorbed glutamate onto the surface. This negatively charged surface further induces the nucleation of the crystalline growth of hydroxyapatite. Interestingly, nucleation and growth of the hydroxyapatite crystals lead to the formation of a self-supporting hydrogel to construct a suitable interface for cellular interactions. Furthermore, microscopic and spectroscopic investigations revealed the crystalline growth of the hydroxyapatite onto peptide fibers. The physical properties were also influenced by this crystalline deposition, as evident from the hierarchical organization leading to hydrogels with enhanced mechanical stiffness and improved thermal stability of the scaffold. Furthermore, the mineralized peptide fibers were highly compatible with osteoblast cells and showed increased cellular biomarkers production, which further reinforced the potential application toward effectively fabricating the grafts for bone tissue engineering.
Collapse
Affiliation(s)
- Vijay Kumar Pal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali140306, India
| |
Collapse
|
9
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
10
|
Obayashi H, Wakabayashi R, Kamiya N, Goto M. Supramolecular localization in liquid-liquid phase separation and protein recruitment in confined droplets. Chem Commun (Camb) 2023; 59:414-417. [PMID: 36484713 DOI: 10.1039/d2cc05910j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This study investigated the localization of artificial peptide supramolecular fibers in liquid-liquid phase separation (LLPS). Hierarchical organization led to the localization of supramolecules in LLPS droplets. Moreover, proteins were recruited into confined droplets by the physical adsorption of proteins on the supramolecules, enabling an enhanced cascade reaction.
Collapse
Affiliation(s)
- Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Short Peptide-Based Smart Thixotropic Hydrogels †. Gels 2022; 8:gels8090569. [PMID: 36135280 PMCID: PMC9498505 DOI: 10.3390/gels8090569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Thixotropy is a fascinating feature present in many gel systems that has garnered a lot of attention in the medical field in recent decades. When shear stress is applied, the gel transforms into sol and immediately returns to its original state when resting. The thixotropic nature of the hydrogel has inspired scientists to entrap and release enzymes, therapeutics, and other substances inside the human body, where the gel acts as a drug reservoir and can sustainably release therapeutics. Furthermore, thixotropic hydrogels have been widely used in various therapeutic applications, including drug delivery, cornea regeneration and osteogenesis, to name a few. Because of their inherent biocompatibility and structural diversity, peptides are at the forefront of cutting-edge research in this context. This review will discuss the rational design and self-assembly of peptide-based thixotropic hydrogels with some representative examples, followed by their biomedical applications.
Collapse
|
13
|
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022; 8:533. [PMID: 36135245 PMCID: PMC9498526 DOI: 10.3390/gels8090533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
14
|
Dowari P, Roy S, Das S, Chowdhuri S, Kushwaha R, Das BK, Ukil A, Das D. Mannose‐decorated composite peptide hydrogel with thixotropic and syneresis properties and its application in treatment of Leishmaniasis. Chem Asian J 2022; 17:e202200550. [DOI: 10.1002/asia.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Payel Dowari
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Shalini Roy
- University of Calcutta Biochemistry 35, Ballygunge Circular Road 700019 Kolkata INDIA
| | - Saurav Das
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry IIT GUWAHATI 781039 KAMRUP INDIA
| | - Sumit Chowdhuri
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Ritvika Kushwaha
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Basab Kanti Das
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry Department of Chemistry, IIT Guwahati, Kamrup 781039 Guwahati INDIA
| | - Anindita Ukil
- University of Calcutta Biochemistry 35, Ballygunge Circular Road 700019 Kolkata INDIA
| | - Debapratim Das
- Indian Institute of Technology Guwahati Department of Chemistry IIT Guwahati 781039 Guwahati INDIA
| |
Collapse
|
15
|
Localized Enzyme-Assisted Self-Assembly of low molecular weight hydrogelators. Mechanism, applications and perspectives. Adv Colloid Interface Sci 2022; 304:102660. [PMID: 35462266 DOI: 10.1016/j.cis.2022.102660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 01/31/2023]
Abstract
Nature uses systems of high complexity coordinated by the precise spatial and temporal control of associated processes, working from the molecular to the macroscopic scale. This living organization is mainly ensured by enzymatic actions. Herein, we review the concept of Localized Enzyme-Assisted Self-Assembly (LEASA). It is defined and presented as a straightforward and insightful strategy to achieve high levels of control in artificial systems. Indeed, the use of immobilized enzymes to drive self-assembly events leads not only to the local formation of supramolecular structures but also to tune their kinetics and their morphologies. The possibility to design tailored complex systems taking advantage of self-assembled networks through their inherent and emergent properties offers new perspectives for the design of novel, more adaptable materials. As a result, some applications have already been developed and are gathered in this review. Finally, challenges and perspectives of LEASA are introduced and discussed.
Collapse
|
16
|
Sharma P, Pal VK, Kaur H, Roy S. Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds. Biomacromolecules 2022; 23:2496-2511. [PMID: 35522599 DOI: 10.1021/acs.biomac.2c00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multicomponent self-assembly is an emerging approach in peptide nanotechnology to develop nanomaterials with superior physical and biological properties. Inspired by the multicomponent nature of the native extracellular matrix (ECM) and the well-established advantages of co-assembly in the field of nanotechnology, we have attempted to explore the noncovalent interactions among the sugar and peptide-based biomolecular building blocks as an approach to design and develop advanced tissue scaffolds. We utilized TEMPO-oxidized nanofibrillar cellulose (TO-NFC) and a short ionic complementary peptide, Nap-FEFK, to fabricate highly tunable supramolecular hydrogels. The differential doping of the peptide into the TO-NFC hydrogel was observed to tune the surface hydrophobicity, microporosity, and mechanical stiffness of the scaffold. Interestingly, a differential cellular response was observed toward composite scaffolds with a variable ratio of TO-NFC versus Nap-FEFK. Composite scaffolds having a 10:1 (w/w) ratio of TO-NFC and the Nap-FEFK peptide showed enhanced cellular survival and proliferation under two-dimensional cell culture conditions. More interestingly, the cellular proliferation on the 10:1 matrix was found to be similar to that of Matrigel in three-dimensional culture conditions, which clearly indicated the potential of these hydrogels in advanced tissue engineering applications. Additionally, these composite hydrogels did not elicit any significant inflammatory response in Raw cells and supported their survival and proliferation, which further emphasized their ability to form versatile scaffolds for tissue regeneration. This multicomponent assembly approach to construct biomolecular composite hydrogels to access superior physical and biological properties within the scaffold is expected to improve the scope for designing novel ECM-mimicking biomaterials for regenerative medicine.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Vijay K Pal
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Harsimran Kaur
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| |
Collapse
|
17
|
Sun YL, Montz BJ, Selhorst R, Tang HY, Zhu J, Nevin KP, Woodard TL, Ribbe AE, Russell TP, Nonnenmann SS, Lovley DR, Emrick T. Solvent-Induced Assembly of Microbial Protein Nanowires into Superstructured Bundles. Biomacromolecules 2021; 22:1305-1311. [PMID: 33591727 DOI: 10.1021/acs.biomac.0c01790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein-based electronic biomaterials represent an attractive alternative to traditional metallic and semiconductor materials due to their environmentally benign production and purification. However, major challenges hindering further development of these materials include (1) limitations associated with processing proteins in organic solvents and (2) difficulties in forming higher-order structures or scaffolds with multilength scale control. This paper addresses both challenges, resulting in the formation of one-dimensional bundles composed of electrically conductive protein nanowires harvested from the microbes Geobacter sulfurreducens and Escherichia coli. Processing these bionanowires from common organic solvents, such as hexane, cyclohexane, and DMF, enabled the production of multilength scale structures composed of distinctly visible pili. Transmission electron microscopy revealed striking images of bundled protein nanowires up to 10 μm in length and with widths ranging from 50-500 nm (representing assembly of tens to hundreds of nanowires). Conductive atomic force microscopy confirmed the presence of an appreciable nanowire conductivity in their bundled state. These results greatly expand the possibilities for fabricating a diverse array of protein nanowire-based electronic device architectures.
Collapse
Affiliation(s)
- Yun-Lu Sun
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Brian J Montz
- Department of Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Ryan Selhorst
- Department of Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Hai-Yan Tang
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Jiaxin Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Thomas P Russell
- Department of Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Stephen S Nonnenmann
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Todd Emrick
- Department of Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| |
Collapse
|
18
|
Zeng H, Roberts DA. Recent Progress in Stimuli-Induced Morphology Transformations of Block Copolymer Assemblies. Aust J Chem 2021. [DOI: 10.1071/ch21200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|