1
|
Huang ZJ, Ye MN, Peng XH, Gui P, Cheng F, Wang GH. Thiolated chitosan hydrogel combining nitric oxide and silver nanoparticles for the effective treatment of diabetic wound healing. Int J Biol Macromol 2025; 311:143730. [PMID: 40316112 DOI: 10.1016/j.ijbiomac.2025.143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/06/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Nitric oxide (NO) has shown significant potential in chronic wound healing due to its ability of promoting blood circulation. However, excessive NO can trigger local inflammatory response, potentially hindering wound healing. Therefore, controlled and sustained NO release to minimize pro-inflammation effects during treatment is in great demand for diabetic wounds. Herein, an injectable thiolated chitosan hydrogel loaded with NO donors (GNO) and silver nanoparticles (AgNPs) is presented for effective diabetic wound treatment, from which NO was released stably and sustainably responsive to reactive oxygen species (ROS) at the wound site. The combination of NO and AgNPs demonstrated robust antibacterial activity and biofilm dissipation. During diabetic wound treatments, the sustained release of NO promoted blood vessel regeneration while inhibiting inflammatory factors, thereby accelerating wound healing. This combined approach achieves efficient antibacterial action, biofilm prevention, inflammation suppression, vascular repair, improved local blood circulation, ultimately facilitating the reconstruction of epithelial structures at the wound site, thereby providing a promising solution for the diabetic chronic wound healing.
Collapse
Affiliation(s)
- Zeng-Jin Huang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Meng-Nan Ye
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xin-Hui Peng
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Ping Gui
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Fan Cheng
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guan-Hai Wang
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Pareek D, Zeyaullah M, Patra S, Alagu O, Singh G, Wasnik K, Gupta PS, Paik P. Mesoporous polymeric nanoparticles for effective treatment of inflammatory diseases: an in vivo study. J Mater Chem B 2025; 13:3094-3113. [PMID: 39902477 DOI: 10.1039/d4tb02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Acute inflammatory diseases require suitable medicine over the existing therapeutics. In this line, the present work is focused on developing polymeric nanomedicine for the treatment of inflammatory disorders. Herein, cell viable nanoparticles (GlyNPs) of size 180-250 nm in diameter and pore size of 4-5 nm in diameter, based on glycine and acryloyl chloride, have been developed and proved to be a potential anti-inflammatory agent without using any conventional drugs. These particles exhibit colloidal stability (with a zeta potential of -35.6 mV). A network pharmacology-based computational study has been executed on 9076 genes and proteins responsible for inflammatory diseases, out of which 10 are selected that have a major role in rheumatoid arthritis (RA). In silico docking study has been conducted to find out the targeted efficiency of the GlyNPs considering 10 inflammation-specific markers, namely IL-6, IL-1β, TNF-α, TLR-4, STAT-1, MAPK-8, MAPK-14, iNOS, NF-κβ and COX-2. The results revealed that the GlyNPs could be an excellent anti-inflammatory component similar to aspirin. The in vitro inflammation activity of these GlyNPs has also been checked on an inflammation model generated by LPS in RAW 264.7 macrophages. Then, the in vitro anti-inflammation efficiency has been checked with 10-150 μg mL-1 of GlyNP doses. The treatment efficiency has been checked on inflammation-responsible immune markers (NO level, NF-κβ, INF-γ, IL-6, IL-10, and TNF-α) and it was found that the GlyNPs are an excellent component in reducing inflammation. The in vivo therapeutic response of GlyNPs on the induced rheumatoid arthritis (RA) model has been evaluated by measuring the morphological, biochemical and immune-cytokine and interferon levels responsible for the inflammation, using a 2 g kg-1 dose (sample to weight of rat). The anti-inflammatory efficiency of GlyNPs without using additional drugs was found to be excellent. Thus, GlyNPs could be paramount for the potential treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Md Zeyaullah
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Oviya Alagu
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India.
| |
Collapse
|
3
|
Tortella Fuentes G, Fincheira P, Rubilar O, Leiva S, Fernandez I, Schoebitz M, Pelegrino MT, Paganotti A, dos Reis RA, Seabra AB. Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics (Basel) 2024; 13:1047. [PMID: 39596741 PMCID: PMC11591520 DOI: 10.3390/antibiotics13111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Nitric oxide (NO) is an antimicrobial and anti-biofilm agent with significant potential for combating biofilm-associated infections and antibiotic resistance. However, owing to its high reactivity due to the possession of a free radical and short half-life (1-5 s), the practical application of NO in clinical settings is challenging. Objectives: This review explores the development of NO-releasing nanoparticles that provide a controlled, targeted delivery system for NO, enhancing its antimicrobial efficacy while minimizing toxicity. The review discusses various NO donors, nanoparticle platforms, and how NO disrupts biofilm formation and eradicates pathogens. Additionally, we examine the highly encouraging and inspiring results of NO-releasing nanoparticles against multidrug-resistant strains and their applications in medical and environmental contexts. This review highlights the promising role of NO-based nanotechnologies in overcoming the challenges posed by increasing antibiotic resistance and biofilm-associated infections. Conclusions: Although NO donors and nanoparticle delivery systems show great potential for antimicrobial and anti-biofilm uses, addressing challenges related to controlled release, toxicity, biofilm penetration, resistance, and clinical application is crucial.
Collapse
Affiliation(s)
- Gonzalo Tortella Fuentes
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sebastian Leiva
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
| | - Ivette Fernandez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | | | - André Paganotti
- Departamento de Farmácia, Universidade Federal de São Paulo, Diadema 09972-270, SP, Brazil
| | - Roberta Albino dos Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| | - Amedea B. Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| |
Collapse
|
4
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
5
|
Wang Y, Wang X, Zhang C, Li R, Li J, Shi H, Zhang C, Feng L. Customized A-D-A type molecule to construct a nitric oxide nanogenerator with enhanced antibacterial activity for infected wound healing. J Mater Chem B 2024; 12:9675-9685. [PMID: 39193614 DOI: 10.1039/d4tb01201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bacterial infections pose an increasingly serious threat to global health due to the development of drug-resistant strains. Developing a method to efficiently kill bacteria and promote tissue repair is imperative to decrease the damage from bacterial infection, especially infected wounds. Herein, a biofriendly and light-controlled nitric oxide (NO) generator HFB with simultaneous bacterial killing and wound repair properties is reported based on a tailored light-responsive molecule F(EIBC)2. HFB demonstrates an appropriate photothermal conversion efficiency of 33.4% and type I reactive oxygen species (˙OH and H2O2) generation capability to simultaneously trigger NO generation and potently kill bacteria. Furthermore, HFB can effectively eradicate mature bacterial biofilms with the aid of favorable permeability of NO. Additionally, HFB effectively eradicates Staphylococcus aureus in infected wounds of living mice and accelerates healing via NO-induced angiogenesis and collagen deposition. Owing to the encapsulated human serum albumin (HSA), heavy metal-free feature, and synergistic killing mechanism, HFB exhibits good biosafety to surrounding tissue and major organs. This work provides a novel dual-functional photo-responsive molecule and a potential light-controlled release platform for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Xiaohuan Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Chuangxin Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Ruipeng Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan 030012, China
| |
Collapse
|
6
|
Mondal A, Paul S, De P. Recent Advancements in Polymeric N-Nitrosamine-Based Nitric Oxide (NO) Donors and their Therapeutic Applications. Biomacromolecules 2024; 25:5592-5608. [PMID: 39116284 DOI: 10.1021/acs.biomac.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nitric oxide (NO), a gasotransmitter, is known for its wide range of effects in vasodilation, cardiac relaxation, and angiogenesis. This diatomic free radical also plays a pivotal role in reducing the risk of platelet aggregation and thrombosis. Furthermore, NO demonstrates promising potential in cancer therapy as well as in antibacterial and antibiofilm activities at higher concentrations. To leverage their biomedical activities, numerous NO donors have been developed. Among these, N-nitrosamines are emerging as a notable class, capable of releasing NO under suitable photoirradiation and finding a broad range of therapeutic applications. This review discusses the design, synthesis, and biological applications of polymeric N-nitrosamines, highlighting their advantages over small molecular NO donors in terms of stability, NO payload, and target-specific delivery. Additionally, various small-molecule N-nitrosamines are explored to provide a comprehensive overview of this burgeoning field. We anticipate that this review will aid in developing next-generation polymeric N-nitrosamines with improved physicochemical properties.
Collapse
Affiliation(s)
- Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
7
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
8
|
Griffin L, Garren MRS, Maffe P, Ghalei S, Brisbois EJ, Handa H. Preventing Staphylococci Surgical Site Infections with a Nitric Oxide-Releasing Poly(lactic acid- co-glycolic acid) Suture Material. ACS APPLIED BIO MATERIALS 2024; 7:3086-3095. [PMID: 38652779 PMCID: PMC11110049 DOI: 10.1021/acsabm.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Of the 27 million surgeries performed in the United States each year, a reported 2.6% result in a surgical site infection (SSI), and Staphylococci species are commonly the culprit. Alternative therapies, such as nitric oxide (NO)-releasing biomaterials, are being developed to address this issue. NO is a potent antimicrobial agent with several modes of action, including oxidative and nitrosative damage, disruption of bacterial membranes, and dispersion of biofilms. For targeted antibacterial effects, NO is delivered by exogenous donor molecules, like S-nitroso-N-acetylpenicillamine (SNAP). Herein, the impregnation of SNAP into poly(lactic-co-glycolic acid) (PLGA) for SSI prevention is reported for the first time. The NO-releasing PLGA copolymer is fabricated and characterized by donor molecule loading, leaching, and the amount remaining after ethylene oxide sterilization. The swelling ratio, water uptake, static water contact angle, and tensile strength are also investigated. Furthermore, its cytocompatibility is tested against 3T3 mouse fibroblast cells, and its antimicrobial efficacy is assessed against multiple Staphylococci strains. Overall, the NO-releasing PLGA copolymer holds promise as a suture material for eradicating surgical site infections caused by Staphylococci strains. SNAP impregnation affords robust antibacterial properties while maintaining the cytocompatibility and mechanical integrity.
Collapse
Affiliation(s)
- Lauren Griffin
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Richard Stephen Garren
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Oh Y, Park K, Jung S, Choi M, Kim T, Lee Y, Choi JY, Kim YH, Jung SY, Hong J. Inhalable Nitric Oxide Delivery Systems for Pulmonary Arterial Hypertension Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308936. [PMID: 38054614 DOI: 10.1002/smll.202308936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated blood pressure in the pulmonary arteries. Nitric oxide (NO) is a gaseous signaling molecule with potent vasodilator effects; however, inhaled NO is limited in clinical practice because of the need for tracheal intubation and the toxicity of high NO concentrations. In this study, inhalable NO-releasing microspheres (NO inhalers) are fabricated to deliver nanomolar NO through a nebulizer. Two NO inhalers with distinct porous structures are prepared depending on the molecular weights of NO donors. It is confirmed that pore formation can be controlled by regulating the migration of water molecules from the external aqueous phase to the internal aqueous phase. Notably, open porous NO inhalers (OPNIs) can deliver NO deep into the lungs through a nebulizer. Furthermore, OPNIs exhibit vasodilatory and anti-inflammatory effects via sustained NO release. In conclusion, the findings suggest that OPNIs with highly porous structures have the potential to serve as tools for PAH treatment.
Collapse
Affiliation(s)
- Yoogyeong Oh
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoojin Lee
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Young Choi
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Se Yong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Davari N, Nourmohammadi J, Mohammadi J. Nitric oxide-releasing thiolated starch nanoparticles embedded in gelatin sponges for wound dressing applications. Int J Biol Macromol 2024; 265:131062. [PMID: 38521307 DOI: 10.1016/j.ijbiomac.2024.131062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
This study introduces a novel wound dressing by combining nitric oxide-releasing thiolated starch nanoparticles (NO-TS NPs) with gelatin. First, starch was thiolated (TS), and then its nanoparticles were prepared (TS NPs). Subsequently, NPs were covalently bonded to sodium nitrite to obtain NO-releasing TS NPs (NO-TS-NPs) that were incorporated into gelatin sponges at various concentrations. The resulting spherical TS NPs had a mean size of 85.42 ± 5.23 nm, which rose to 100.73 ± 7.41 nm after bonding with sodium nitrite. FTIR spectroscopy confirmed S-nitrosation on the NO-TS NPs' surface, and morphology analysis showed well-interconnected pores in all sponges. With higher NO-TS NPs content, pore size, porosity, and water uptake increased, while compressive modulus and strength decreased. Composites exhibited antibacterial activity, particularly against E. coli, with enhanced efficacy at higher NPs' concentrations. In vitro release studies demonstrated Fickian diffusion, with faster NO release in sponges containing more NPs. The released NO amounts were non-toxic to fibroblasts, but samples with fewer NO-TS NPs exhibited superior cellular density, cell attachment, and collagen secretion. Considering the results, including favorable mechanical strength, release behavior, antibacterial and cellular properties, gelatin sponges loaded with 2 mg/mL of NO-TS NPs can be suitable for wound dressing applications.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran.
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| |
Collapse
|
11
|
Gupta PS, Wasnik K, Patra S, Pareek D, Singh G, Yadav DD, Maity S, Paik P. Nitric oxide releasing novel amino acid-derived polymeric nanotherapeutic with anti-inflammatory properties for rapid wound tissue regeneration. NANOSCALE 2024; 16:1770-1791. [PMID: 38170815 DOI: 10.1039/d3nr03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Endogenous gasotransmitter nitric oxide (NO) is a central signalling molecule that modulates wound healing by maintaining homeostasis, collagen formation, wound contraction, anti-microbial action and accelerating tissue regeneration. The optimum delivery of NO using nanoparticles (NPs) is clinically challenging; hence, it is drawing significant attention in wound healing. Herein, a novel polymeric nanoplatform loaded with sodium nitroprusside (SP) NPs was prepared and used for wound healing to obtain the sustained release of NO in therapeutic quantities. SP NPs-induced excellent proliferation (∼300%) of mouse fibroblast (L929) cells was observed. With an increase in the SP NPs dose at 200 μg mL-1 concentration, a 200% upsurge in proliferation was observed along with enhanced migration, and only 17.09 h were required to fill the 50% gap compared to 37.85 h required by the control group. Further, SP NPs showed an insignificant impact on the coagulation cascade, revealing safe wound-healing treatment when tested in isolated rat RBCs. Additionally, SP NPs exhibited excellent angiogenic activity at a 10 μg mL-1 dose. Moreover, the formulated SP nanoformulation is non-irritant, non-toxic, and does not produce any skin sensitivity reaction on the rat's skin. Further, an in vivo wound healing study revealed that within 11 days of treatment with SP nanoformulation, 99.2 ± 1.0% of the wound was closed, while in the control group, only 45.5 ± 3.8% was repaired. These results indicate that owing to sustained NO release, the SP NP and SP nanoformulations are paramount with enormous clinical potential for the regeneration of wound tissues.
Collapse
Affiliation(s)
- Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Somedutta Maity
- School of Engineering Science and Technology, University of Hydrabad, Hydrabad, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
12
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
13
|
Jung S, Heo S, Oh Y, Park K, Park S, Choi W, Kim YH, Jung SY, Hong J. Zwitterionic Inhaler with Synergistic Therapeutics for Reprogramming of M2 Macrophage to Pro-Inflammatory Phenotype. Adv Healthc Mater 2023; 12:e2300226. [PMID: 37166052 DOI: 10.1002/adhm.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Myriad lung diseases are life threatening and macrophages play a key role in both physiological and pathological processes. Macrophages have each pro-/anti-inflammatory phenotype, and each lung disease can be aggravated by over-polarized macrophage. Therefore, development of a method capable of mediating the macrophage phenotype is one of the solutions for lung disease treatment. For mediating the phenotype of macrophages, the pulmonary delivery system (PDS) is widely used due to its advantages, such as high efficiency and accessibility of the lungs. However, it has a low drug delivery efficiency ironically because of the perfect lung defense system consisting of the mucus layer and airway macrophages. In this study, zwitterion-functionalized poly(lactide-co-glycolide) (PLGA) inhalable microparticles (ZwPG) are synthesized to increase the efficiency of the PDS. The thin layer of zwitterions formed on PLGA surface has high nebulizing stability and show high anti-mucus adhesion and evasion of macrophages. As a reprogramming agent for macrophages, ZwPG containing dexamethasone (Dex) and pirfenidone (Pir) are treated to over-polarized M2 macrophages. As a result, a synergistic effect of Dex/Pir induces reprogramming of M2 macrophage to pro-inflammatory phenotypes.
Collapse
Affiliation(s)
- Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungeun Heo
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoogyeong Oh
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woojin Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Se Yong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
14
|
Zhang Q, Zhang Z, Zou X, Liu Z, Li Q, Zhou J, Gao S, Xu H, Guo J, Yan F. Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment. Biomater Sci 2023; 11:3114-3127. [PMID: 36917099 DOI: 10.1039/d2bm02096c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Poor permeation of therapeutic agents and similar eukaryotic cell metabolic and physiological properties of fungi and human cells are two major challenges that lead to the failure of current therapy for fungi-induced skin and soft tissue infections. Herein, a nitric oxide (NO)-releasing poly(ionic liquid)-based microneedle (PILMN-NO) with the capacity of deep persistent NO toward subcutaneous fungal bed is presented as a synergistic antifungal treatment strategy to treat subcutaneous fungal infection. Upon the insertion of PILMN-NO into skin, the contact fungicidal activities induced by electrostatic and hydrophobic effects of poly(ionic liquid) and the released NO sterilization resulting from the peroxidation and nitrification effect of NO achieved enhanced antifungal efficacy against fungi (Candida albicans) both in vitro and in vivo. Simultaneously, PILMN-NO showed biofilm ablation ability and efficiently eliminated mature biofilms. In vivo fungal-induced subcutaneous abscess studies revealed that PILMN-NO could effectively sterilize fungi while suppressing the inflammatory reaction, facilitating collagen deposition and angiogenesis, and promoting wound healing. This work provides a new strategy to overcome the difficulties in deep skin fungal infection treatment and has potential for further exploitation of NO-releasing microbicidal therapy.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiamei Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Tang L, Sun X, Gao X, Wang L, Yang P, Ling P. Ionic liquid functionalized metal-organic framework nanowires for sensitive and real-time electrochemical monitoring of nitric oxide released from living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:729-737. [PMID: 36722987 DOI: 10.1039/d2ay02059a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive, selective, and real-time detection of nitric oxide (NO) is still challenging due to its rapid diffusion, short half-life, and low concentration in living systems. Herein, we synthesized well-defined ultralong metal-organic framework nanowires (MOFNWs) that were further uniformly covered with gold nanoparticle (AuNPs) and ionic liquids (ILs) and applied these NWs to detect and monitor NO released from living cells. In this system, ILs and AuNPs act as excellent catalysts for electrochemical oxidation of NO. By taking advantage of the synergetic effect between ILs, AuNPs and MOFNWs, the composite (IL@Au@MOFNWs) sensor probe displays excellent electrocatalytic activity toward NO oxidation with a detection limit as low as 2.28 nM for NO detection. The high levels of selectivity and sensitivity to NO in complex biological environments can be attributed to the exposed Ni2+ active sites, high ion-electron transport rates of NWs, and the high conductivity of ILs and AuNPs. Furthermore, the IL@Au@MOFNWs offer a biocompatible sensing interface enabling rapid real-time monitoring of NO released from living cells by drug stimulation. Collectively, these results demonstrate that functionalized ultralong MOFNWs exhibit a remarkable ability to quantify NO levels in cells and could therefore provide new potential of this sensor in electrochemical detection of living bodies.
Collapse
Affiliation(s)
- Lijun Tang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Linyu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
16
|
Tao S, Shen Z, Chen J, Shan Z, Huang B, Zhang X, Zheng L, Liu J, You T, Zhao F, Hu J. Red Light-Mediated Photoredox Catalysis Triggers Nitric Oxide Release for Treatment of Cutibacterium Acne Induced Intervertebral Disc Degeneration. ACS NANO 2022; 16:20376-20388. [PMID: 36469724 DOI: 10.1021/acsnano.2c06328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been known as a highly prevalent and disabling disease, which is one of the main causes of low back pain and disability. Unfortunately, there is no effective cure to treat this formidable disease, and surgical interventions are typically applied. Herein, we report that the local administration of nitric oxide (NO)-releasing micellar nanoparticles can efficiently treat IVDD associated with Modic changes in a rat model established by infection with Cutibacterium acnes (C. acnes). By covalent incorporation of palladium(II) meso-tetraphenyltetrabenzoporphyrin photocatalyst and coumarin-based NO donors into the core of micellar nanoparticles, we demonstrate that the activation of the UV-absorbing coumarin-based NO donors can be achieved under red light irradiation via photoredox catalysis, although it remains a great challenge to implement photoredox catalysis reactions in biological conditions due to the complex microenvironments. Notably, the local delivery of NO can not only efficiently eradicate C. acnes pathogens but also inhibit the inflammatory response and osteoclast differentiation in the intervertebral disc tissues, exerting antibacterial, anti-inflammatory, and antiosteoclastogenesis effects. This work provides a feasible means to efficiently treat IVDD by the local administration of NO signaling molecules without resorting to a surgical approach.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhi Shan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Junhui Liu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei230001, AnhuiChina
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| |
Collapse
|
17
|
Wu HC, Chen YC, Hsieh CL, Hsiao G, Wang SW, Cheng MJ, Chao CY, Lee TH, Kuo YH. Chemical constituents and their anti-neuroinflammatory activities from the bark of Taiwan incense cedar, Calocedrus formosana. PHYTOCHEMISTRY 2022; 204:113347. [PMID: 36027968 DOI: 10.1016/j.phytochem.2022.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
One undescribed C40 terpenoid, calomacroquinoic acid; four undescribed diterpenes, 5α,6α-epoxy-7α-hydroxyferruginol, 15-ethoxysugiol, 7-methoxy-6,7-secoabieta-8,11,13-triene-6,12-diol, and ethyl 7,8-secoabieta-11,14-dioxo-7-ate; two compounds isolated from Nature for the first time, 6β,7α-dihydroxyferruginol and 12-O-methyltaxochinon; and six known compounds were successfully identified from the bark of Taiwan incense cedar Calocedrus formosana. Structures of all isolates were elucidated by physical data (appearance, ultraviolet, infrared, specific rotation, and X-ray) and spectroscopic data (1D and 2D nuclear magnetic resonance, and high-resolution electron ionization mass spectrometry). The biosynthetic pathway of calomacroquinoic acid is also described in the current study. Nitric oxide production in lipopolysaccharide (LPS)-stimulated BV-2 microglia cells was inhibited by 6,7-dehydroferruginol, 7α,11-dihydroxy-12-methoxy-8,11,13-abietriene, and trans-communic acid. Altogether, the bark of C. formosana possessed several potential natural therapeutics against inflammation-related neuronal diseases.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Yu-Chang Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chin-Lin Hsieh
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan; Department of Disaster Management, Taiwan Police College, Taipei, 116, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, 252, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu, 300, Taiwan
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
18
|
Nanoparticle-based delivery of nitric oxide for therapeutic applications. Ther Deliv 2022; 13:403-427. [DOI: 10.4155/tde-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery. Recently, a number of nanoparticle (NP)-based systems are described that address some of these issues by taking advantage of the unique attributes of the NP carrier to effect efficient NO delivery. This review highlights the progress that has been made over the past 5 years in the use of various constructs for the therapeutic delivery of NO.
Collapse
|
19
|
Liu Y, Chen X, Lai X, Dzuvor CKO, Lyu L, Chow SH, He L, Yu L, Wang Y, Song J, Hsu HY, Lin TW, Chan PWH, Shen HH. Coassembled Nitric Oxide-Releasing Nanoparticles with Potent Antimicrobial Efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37369-37379. [PMID: 35951370 DOI: 10.1021/acsami.2c08833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO)-releasing nanoparticles are effective nanomedicines with diverse therapeutic advantages compared with small molecule-based NO donors. Here, we report a new class of furoxan-based NO-releasing nanoparticles using a simple, creative yet facile coassembly approach. This is the first time we demonstrated that the coassembled NO-releasing nanoparticles with poly(ethylene glycol)101-block-poly(propylene glycol)56-block-poly(ethylene glycol)101 (Pluronic F127) had potent antimicrobial efficacies against methicillin-resistant Staphylococcus aureus (MRSA) strains. Nanoparticles obtained from the coassembly of either 4-(1-(3-methylpentan-5-ol)oxyl)(3-phenylsulfonyl) furoxan (compound 1) or 4-methoxy(3-phenylsulfonyl) furoxan (compound 2) with Pluronic F127 exhibit 4-fold improved antimicrobial activities compared to their self-assembled counterparts without Pluronic F127. 5(6)-Carboxylfluorescein (CF) leakage experiments further reveal that both coassembled NO-releasing nanoparticles show stronger interactions with lipid bilayers than those self-assembled alone. Subsequently, their strong plasma membrane-damaging capabilities are confirmed under both high-resolution optical microscopy and scanning electron microscopy characterizations. This coassembly approach could be readily applied to other small molecule-based antimicrobials, providing new solutions and important insights to further antimicrobial recipe design.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiaoyu Chen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Christian K O Dzuvor
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Seong Hoong Chow
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Bao X, Zheng S, Zhang L, Shen A, Zhang G, Liu S, Hu J. Nitric-Oxide-Releasing aza-BODIPY: A New Near-Infrared J-Aggregate with Multiple Antibacterial Modalities. Angew Chem Int Ed Engl 2022; 61:e202207250. [PMID: 35657486 DOI: 10.1002/anie.202207250] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/20/2023]
Abstract
The development of near-infrared (NIR) J-aggregates has received increasing attention due to their broad applications. Here, we report the nitrosation of an amine-containing aza-BODIPY precursor (BDP-NH2 ), affording the first nitric oxide (NO)-releasing NIR J-aggregate (BDP-NO). The introduction of N-nitrosamine moieties efficiently inhibits the aromatic interactions of BDP-NH2 , which instead promotes the formation of J-aggregates within micellar nanoparticles with a remarkable bathochromic shift of ≈109 nm to the NIR window (820 nm). Interestingly, the NO release and photothermal conversion efficiency (PTCE) can be delicately tuned by the loading contents of BDP-NO within micellar nanoparticles, thereby enabling multiple antibacterial modalities by exploring either NO release, photothermal therapy (PTT), or both. We demonstrate the combination of NO and PTT can elevate antibacterial activity while attenuating PTT-associated inflammation for the in vivo treatment of MRSA infection.
Collapse
Affiliation(s)
- Xinyao Bao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| |
Collapse
|
21
|
Bao X, Zheng S, Zhang L, Shen A, Zhang G, Liu S, Hu J. Nitric Oxide‐Releasing aza‐BODIPY: A New Near‐Infrared J‐Aggregate with Multiple Antibacterial Modalities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinyao Bao
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Shaoqiu Zheng
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Lei Zhang
- China University of Science and Technology Department of Pharmacy CHINA
| | - Aizong Shen
- China University of Science and Technology Department of Pharmacy CHINA
| | - Guoying Zhang
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Shiyong Liu
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Jinming Hu
- University of Science and Technology of China Department of Polymer Science and Engineering 96 Jinzhai Road230026中国 230026 Hefei CHINA
| |
Collapse
|
22
|
Yuan Y, Shang Y, Zhou Y, Guo J, Yan F. Enabling Antibacterial and Antifouling Coating via Grafting of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules 2022; 23:2329-2341. [PMID: 35652936 DOI: 10.1021/acs.biomac.2c00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections caused by bacteria and biofilms on the surfaces of biomedical devices and implants pose serious threats to public health. Herein, a nitric oxide (NO) gas-releasing quaternary ammonium-type ionic liquid (IL)-based coating on polydimethylsiloxane (PDMS), PDIL-NO, with effective and long-acting antibacterial and antifouling properties was prepared. N-(2-((2, 3-Dimethylbut-3-enoyl)oxy)ethyl)-N, N-dimethyloctan-1-aminium bromide (IL-Br), and 2-methyl-2-propenoic acid 2-(2-methoxyethoxy) ethyl ester were covalently grafted onto the surfaces of PDMS by a thiol-ene click chemical reaction, followed by incorporation of l-proline anions (Pro-) through anion exchange with Br- to adsorb NO gas. The prepared PDIL-NO showed a prolonged NO-releasing time (>1440 min) and a relatively high concentration (88 μM). Additionally, PDIL-NO possessed good and long-term antimicrobial activity, and could effectively reduce the adsorption of bovine serum albumin and adhesion of bacteria, as well as inhibit wound infection and reduce inflammation in vivo due to the synergetic effect of IL and the released NO. This study may provide a new approach to combat bacterial infections associated with biomedical devices and implants.
Collapse
Affiliation(s)
- Yinghui Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yating Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Luan M, Xu Y, Zhang X, Li D, Yan M, Hou G, Meng Q, Zhao F, Zhao F. Design and synthesis of novel aza-ursolic acid derivatives: in vitro cytotoxicity and nitric oxide release inhibitory activity. Future Med Chem 2022; 14:535-555. [PMID: 35286228 DOI: 10.4155/fmc-2021-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Inducible nitric oxide synthase (iNOS) is a validated target for anti-inflammatory treatment. Based on the authors' previous work, novel aza-ursolic acid derivatives were designed and synthesized and their inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) release from RAW264.7 cells was evaluated. Materials & results: 16 novel derivatives were screened for their in vitro inhibitory activity against NO release using Griess assays and the cytotoxicity was evaluated using MTT assays. The presence of furoxan joined to the A-ring of ursolic acid and N-methylpiperazine groups in the lead compound was identified for anti-inflammatory activity, and compound 21b showed 94.96% inhibition of NO release at 100 μM with an IC50 value of 8.58 μM. Conclusion: Compound 21b has potential anti-inflammatory activity with low cytotoxicity that warrants further preclinical study and evaluation.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yaoyao Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Dalei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengjun Yan
- Yantai Raphael Biotechnology Co., Ltd, Yantai, 264043, PR China
| | - Guige Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, PR China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
24
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
25
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
26
|
Chou HC, Lo CH, Chang LH, Chiu SJ, Hu TM. Organosilica colloids as nitric oxide carriers: Pharmacokinetics and biocompatibility. Colloids Surf B Biointerfaces 2021; 208:112136. [PMID: 34628305 DOI: 10.1016/j.colsurfb.2021.112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a potential therapeutic agent for various diseases. However, it is challenging to deliver this unstable, free-radical gaseous molecule in the body. Various nanoparticle-based drug delivery systems have been investigated as promising NO carriers without detailed characterization of their biological fate. The purpose of this study is to investigate the pharmacokinetics and biocompatibility of organosilica-based NO-delivering nanocarriers. Two distinct NO nanoformulations, namely NO-SiNP-1 and NO-SiNP-2, were prepared from a thiol-functionalized organosilane using nanoprecipitation and direct aqueous synthesis, respectively. During the preparation, the thiol group was converted to S-nitrosothiol (SNO) under a nitrosation condition. The final products contain SNO-loaded organosilica particles of similar sizes (~130 nm), but of different morphologies and surface charges (between the two formulations). In the in vitro release kinetics study, NO-SiNP-1 exhibited a much slower NO release rate than NO-SiNP-2 (by 5-fold); therefore, the former is considered as a slow NO releaser, and the latter a fast NO releaser. However, in the rat pharmacokinetic study (IV bolus of 50 μmol/kg), NO-SiNP-1 was rapidly eliminated from the blood (within 20 min); in contrast, NO-SiNP-2 was slowly eliminated with an extended circulation time of 12 h for plasma SNO, along with markedly higher plasma levels of nitrite and nitrate. The two formulations are generally biocompatible. In conclusion, the paper presents contrast biological fates of two organosilica colloidal formulations for nitric oxide delivery.
Collapse
Affiliation(s)
- Hung-Chang Chou
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chih-Hui Lo
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Li-Hao Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shih-Jiuan Chiu
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Teh-Min Hu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
27
|
Sun B, Ye Z, Zhang M, Song Q, Chu X, Gao S, Zhang Q, Jiang C, Zhou N, Yao C, Shen J. Light-Activated Biodegradable Covalent Organic Framework-Integrated Heterojunction for Photodynamic, Photothermal, and Gaseous Therapy of Chronic Wound Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42396-42410. [PMID: 34472332 DOI: 10.1021/acsami.1c10031] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic wound healing, impeded by bacterial infections and drug resistance, poses a threat to global human health. Antibacterial phototherapy is an effective way to fight microbial infection without causing drug resistance. Covalent organic frameworks (COFs) are a class of highly crystalline functional porous carbon-based materials composed of light atoms (e.g., carbon, nitrogen, oxygen, and borane), showing potential applications in the biomedical field. Herein, we constructed porphyrin-based COF nanosheets (TP-Por CON) for synergizing photodynamic and photothermal therapy under red light irradiation (e.g., 635 nm). Moreover, a nitric oxide (NO) donor molecule, BNN6, was encapsulated into the pore volume of the crystalline porous framework structure to moderately release NO triggered by red light irradiation for realizing gaseous therapy. Therefore, we successfully synthesized a novel TP-Por CON@BNN6-integrated heterojunction for thoroughly killing Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus in vitro. Our research identified that TP-Por CON@BNN6 has favorable biocompatibility and biodegradability, low phototoxicity, anti-inflammatory properties, and excellent mice wound healing ability in vivo. This study indicates that the TP-Por CON@BNN6-integrated heterojunction with multifunctional properties provides a potential strategy for COF-based gaseous therapy and microorganism-infected chronic wound healing.
Collapse
Affiliation(s)
- Baohong Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziqiu Ye
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiuxian Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shurui Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chen Jiang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
28
|
Lin JY, Cao XY, Xiao Y, Wang JX, Luo SH, Yang LT, Fang YG, Wang ZY. Controllable preparation and performance of bio-based poly(lactic acid-iminodiacetic acid) as sustained-release Pb 2+ chelating agent. iScience 2021; 24:102518. [PMID: 34142032 PMCID: PMC8188493 DOI: 10.1016/j.isci.2021.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
The bio-based lactic acid (LA) and the common metal ion chelating agent iminodiacetic acid (IDA) are used to design and prepare a polymeric sustained-release Pb2+ chelating agent by a brief one-step reaction. After the analysis on theoretical calculation for this reaction, poly(lactic acid-iminodiacetic acid) [P(LA-co-IDA)] with different monomer molar feed ratios is synthesized via direct melt polycondensation. P(LA-co-IDA) mainly has star-shaped structure, and some of them have two-core or three-core structure. Thus, a possible mechanism of the polymerization is proposed. The degradation rate of P(LA-co-IDA)s can reach 70% in 4 weeks. The change of IDA release rate is consistent with the trend of the degradation rate, and the good Pb2+ chelating performance is confirmed. P(LA-co-IDA) is expected to be developed as a lead poisoning treatment drug or Pb2+ adsorbent in the environment with long-lasting effect, and this research provides a new strategy for the development of such drugs.
Collapse
Affiliation(s)
- Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Jin-Xin Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Li-Ting Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
29
|
Duan Y, He K, Zhang G, Hu J. Photoresponsive Micelles Enabling Codelivery of Nitric Oxide and Formaldehyde for Combinatorial Antibacterial Applications. Biomacromolecules 2021; 22:2160-2170. [PMID: 33884862 DOI: 10.1021/acs.biomac.1c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is of particular interest to develop new antibacterial agents with low risk of drug resistance development and low toxicity toward mammalian cells to combat pathogen infections. Although gaseous signaling molecules (GSMs) such as nitric oxide (NO) and formaldehyde (FA) have broad-spectrum antibacterial performance and the low propensity of drug resistance development, many previous studies heavily focused on nanocarriers capable of delivering only one GSM. Herein, we developed a micellar nanoparticle platform that can simultaneously deliver NO and FA under visible light irradiation. An amphiphilic diblock copolymer of poly(ethylene oxide)-b-poly(4-((2-nitro-5-(((2-nitrobenzyl)oxy)methoxy)benzyl)(nitroso)amino)benzyl methacrylate) (PEO-b-PNNBM) was successfully synthesized through atom transfer radical polymerization (ATRP). The resulting diblock copolymer self-assembled into micellar nanoparticles without premature NO and FA leakage, whereas they underwent phototriggered disassembly with the corelease of NO and FA. We showed that the NO- and FA-releasing micellar nanoparticles exhibited a combinatorial antibacterial performance, efficiently killing both Gram-negative (e.g., Escherichia coli) and Gram-positive (e.g., Staphylococcus aureus) bacteria with low toxicity to mammalian cells and low hemolytic property. This work provides new insights into the development of GSM-based antibacterial agents.
Collapse
Affiliation(s)
- Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031 Anhui, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|