1
|
Dan A, Sharma D, Singh H, Kumar S, Bhatia Z, Hassan S, Seshadri S, Dhanka M. A dynamically crosslinked, self-adapting, injectable gelatin-chondroitin sulfate hydrogel with antibacterial and antioxidant properties for treatment of deep and irregular wounds. J Mater Chem B 2025. [PMID: 40365810 DOI: 10.1039/d4tb02537g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Chronic, deep, and irregularly shaped wounds often infected with bacteria are considered a major clinical concern. The overproduction of reactive oxygen species (ROS) and disruption of the balance between pro-inflammatory and anti-inflammatory cytokines delay the healing process. Traditionally used dressings are unable to address these multiple issues. We present a multifunctional, self-adaptable, injectable hydrogel composed of gelatin (G) and chondroitin sulfate (CS) containing borate-crosslinked tannic acid (TA), enriched with in situ synthesized silver nanoparticles (AgNPs), which eliminates the necessity of any secondary dressing. The dynamically crosslinked hydrogel demonstrates efficient self-healing, adhesiveness, antioxidant properties, and potential antibacterial activity (E. coli and S. aureus). The injectable hydrogels also exhibit sustained release of TA and AgNPs. The in vitro cytotoxicity reveals the excellent cytocompatibility of the hydrogel with HDF-N fibroblast cells and red blood cells. In vivo studies confirm that the injectable hydrogel demonstrates self-adaptability in irregularly shaped wounds and accelerates the healing process in terms of healing percentage, fibroblast generation, neovascularization, and hair follicle development. Additionally, the in vivo application of the fabricated hydrogels does not produce any significant systemic toxicity. This study demonstrates that the dynamically crosslinked, multifunctional, injectable hydrogel is a promising candidate for treating irregular deep penetrating wounds.
Collapse
Affiliation(s)
- Aniruddha Dan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.
| | - Devanshi Sharma
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India.
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India.
| | - Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India.
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India.
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Yu X, Zou Z, Li Y, Li J, Chen Y, Shi W, Liu X, Guo R, Cai X. Fiber-reinforced gelatin-based hydrogel biocomposite tubular scaffolds with programmable mechanical properties. Biomed Mater 2025; 20:035031. [PMID: 40306305 DOI: 10.1088/1748-605x/add2bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
Tissue-engineered tubular scaffolds (TETS) provide an effective repair solution for human tubular tissue loss and damage caused by congenital defects, disease, or mechanical trauma. However, there are still major challenges to developing TETS with excellent mechanical properties and biocompatibility for human tubular tissue repair. Gelatin-based hydrogels are suitable candidates for tissue-engineered scaffolds because they are hydrolyzed collagen products and have excellent biocompatibility and degradability. However, the mechanical properties of gelatin-based hydrogels are relatively poor and do not align well with the mechanical properties of human tubular tissues. Inspired by the extracellular matrix architecture of human tubular tissues, this study utilizes high-precision 3D printing to fabricate ultrafine fiber network tubular scaffolds (UFNTS) that mimic the arrangement of collagen fibers, which are then embedded in a cell-compatible gelatin-based hydrogel, resulting in the preparation of a fiber/hydrogel biocomposite tubular scaffold (BCTS) with tunable mechanical properties and a J-shaped stress-strain response. Finite element analysis was employed to predict the mechanical behavior of the UFNTS and BCTS. Experimental results indicate that by modifying the structural parameters of the UFNTS, the mechanical properties of the BCTS can be effectively tuned, achieving a programmable range of tensile modulus (0.2-4.35 MPa) and burst pressure (1580-7850 mmHg), which broadly covers the mechanical properties of most human tubular tissues. The design and fabrication of BCTS offer a new approach for the development of TETS while also providing a personalized strategy for such scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Xiong Yu
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zhongfei Zou
- School of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China
| | - Yi Li
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Jiachun Li
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yuewei Chen
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Wenhai Shi
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xixia Liu
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Rui Guo
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xianhui Cai
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
3
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
4
|
Wu L, Zhou Y, Zhang Y, Hu J, Ikegami Y, Aishima S, Ijima H. Fast Wound Healing with a New Functional Hyaluronic Acid Dual Network Hydrogel. Gels 2025; 11:266. [PMID: 40277702 PMCID: PMC12027019 DOI: 10.3390/gels11040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
As dressings for moist wound healing, hyaluronic acid hydrogels play a significant role in maintaining moisture and promoting wound healing. However, existing hydrogel dressings are inadequate in terms of slow gelation time, weak mechanical performance, and fast degradation, which increases the risk of secondary infections during treatment. Therefore, we developed a hyaluronic acid double network hydrogel (DNH). Compared to single-network hydrogels (hydrazone and Diels-Alder), DNH shows a short gelation time (25 s) and strong mechanical properties (Young's modulus = 82 kPa). These advantages enable DNH to immediately fill the irregular shape of the wound after gelation and remain intact after being squeezed. Swelling tests indicated that DNH had a suitable swelling ratio and maintained its structural integrity after swelling. We evaluated the use of DNH as a moist dressing for full-thickness wound healing in vivo. DNH-treated wounds healed faster, with enhanced blood vessel formation and macrophage polarization than gauze-treated wounds. These findings suggest that DNH not only accelerates wound healing but also improves tissue regeneration. Therefore, DNH may be a suitable moist dressing for wound healing.
Collapse
Affiliation(s)
- Lichun Wu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (L.W.); (Y.Z.); (J.H.); (Y.I.)
| | - Yu Zhou
- Department of Chemical Engineering, Faculty of Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (L.W.); (Y.Z.); (J.H.); (Y.I.)
| | - Yi Zhang
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Jia Hu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (L.W.); (Y.Z.); (J.H.); (Y.I.)
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (L.W.); (Y.Z.); (J.H.); (Y.I.)
| | - Shinichi Aishima
- Department of Scientific Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (L.W.); (Y.Z.); (J.H.); (Y.I.)
| |
Collapse
|
5
|
Chen Y, Fu T, Zou Z, Liu Y, Zhu J, Teng B, Yao K, Li H, Li J, Xie Z, He Y. Biological Reinforced Concrete for Cartilage Repair With 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416734. [PMID: 39998315 PMCID: PMC12021066 DOI: 10.1002/advs.202416734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/05/2025] [Indexed: 02/26/2025]
Abstract
The development of biomimetic cartilage constructs (BCCs) with natural extracellular matrix (ECM) microenvironments and topological cues to accelerate the reconstruction of natural articular cartilage (NAC) after injury is challenging due to its complex structure, low cellular content, and less vascularity. Inspired by concrete rebar structure, a biomimetic cartilage named "biological reinforced concrete" is fabricated, with collagen fiber orientation transitioning from parallel to perpendicular, replicating the ECM microenvironments and complex construct of NAC. 3D-printed ultrafine fiber networks (UFNs) served as a degradable "biorebars", while a hybrid biohydrogel acted as "biocement". The stem cells are utilized as "bioactive aggregates". The biocement is developed by combining and screening various biohydrogels to mimic an ECM microenvironment conducive to the formation of NAC. By adjusting the fiber scale and spacing of the UFNs, the mechanical properties of the biomimetic cartilages are controlled to resemble those of NAC. Additionally, the UFNs guided the directed growth of cells and the orderly secretion of ECM. Subsequently, the developed BCCs are implanted into an osteochondral defect, and after 4 months, they successfully reconstructed the complex structure of cartilage with mechanical properties closely resembling those of NAC. The biological reinforced concrete offers a customizable and universal strategy for tissue regeneration.
Collapse
Affiliation(s)
- Yuewei Chen
- School of Mechanical EngineeringGuizhou UniversityGuiyang550025China
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu LaboratorySchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Tao Fu
- Department of Oral and Maxillofacial SurgeryThe Second Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhouZhejiang310000China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000China
| | - Zhongfei Zou
- School of Mechanical EngineeringGuizhou Institute of TechnologyGuiyang550003China
| | - Yanming Liu
- Department of Oral and Maxillofacial SurgeryThe Second Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhouZhejiang310000China
| | - Jianguo Zhu
- Department of UrologyGuizhou Provincial People's HospitalThe Affiliated Hospital of Guizhou UniversityGuiyangGuizhou550002China
| | - Binhong Teng
- Department of OrthodonticsThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310000China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu LaboratorySchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Haibin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu LaboratorySchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jiachun Li
- School of Mechanical EngineeringGuizhou UniversityGuiyang550025China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems & Liangzhu LaboratorySchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
6
|
Kirkpatrick BE, Anseth KS, Hebner TS. Diverse reactivity of maleimides in polymer science and beyond. POLYM INT 2025; 74:296-306. [PMID: 40255264 PMCID: PMC12007691 DOI: 10.1002/pi.6715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 04/22/2025]
Abstract
Maleimides are remarkably versatile functional groups, capable of participating in homo- and copolymerizations, Diels-Alder and (photo)cycloadditions, Michael additions, and other reactions. Their reactivity has afforded materials ranging from polyimides with high upper service temperatures to hydrogels for regenerative medicine applications. Moreover, maleimides have proven to be an enabling chemistry for pharmaceutical development and bioconjugation via straightforward modification of cysteine residues. To exert spatiotemporal control over reactions with maleimides, multiple approaches have been developed to photocage nucleophiles, dienes, and dipoles. Additionally, further substitution of the maleimide alkene (e.g., mono- and di-halo-, thio-, amino-, and methyl-maleimides, among other substituents) confers tunable reactivity and dynamicity, as well as responsive mechanical and optical properties. In this mini-review, we highlight the diverse functionality of maleimides, underscoring their notable impact in polymer science. This moiety and related heterocycles will play an important role in future innovations in chemistry, biomedical, and materials research.
Collapse
Affiliation(s)
- Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Materials Science and Engineering Program, University of Colorado Boulder
| | | |
Collapse
|
7
|
Zhou YG, Li SK, Xue Y, Fan B, Gao QM, Zhan LW, Liu RT, Li YF, Sun RL, Tian YZ. Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects. J Biomater Appl 2025; 39:828-839. [PMID: 39668782 DOI: 10.1177/08853282241306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
Collapse
Affiliation(s)
- Yi Gui Zhou
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Song Kai Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Xue
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Bo Fan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Qiu Ming Gao
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Long Wen Zhan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Tang Liu
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Fei Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Long Sun
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yong Zheng Tian
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
8
|
Sasikumar SC, Goswami U, Raichur AM. Mucin-Based Dual Cross-Linkable IPN Hydrogel Bioink for 3D Bioprinting and Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2025; 8:1186-1200. [PMID: 39818697 DOI: 10.1021/acsabm.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties. HA has been demonstrated to improve cartilage lubrication, regulate inflammation, promote cell proliferation, and support extracellular matrix (ECM) deposition and regeneration, making it valuable for cartilage TE. Comprehensive experiments were conducted to assess morphology, swelling, degradation, mechanical and rheological properties, printability, and biocompatibility. Results indicated that the double cross-linked scaffolds comprising MuMA, alginate, and HA exhibited compressive moduli comparable to native cartilage, unlike single cross-linked variants. The double cross-linking also influenced degradation, water uptake, and porosity, contributing to the scaffold durability and stability for chondrocyte support. Biocompatibility tests with C28/I2 cells demonstrated the cell-supportive and chondrogenic potential of the bioink. This study establishes mucin as a versatile material for specialized cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Sruthi C Sasikumar
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Upashi Goswami
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
- Institute for Nanoscience and Water Sustainability, University of South Africa, The Science Campus, Florida Park, 1710 Roodepoort,Johannesburg,South Africa
| |
Collapse
|
9
|
Habibah T, Matonohová J, Kulhánek J, Fitzgerald U, Ingr M, Pravda M, Pandit A, Velebný V. In situ formed aldehyde-modified hyaluronic acid hydrogel with polyelectrolyte complexes of aldehyde-modified chondroitin sulfate and gelatin: An approach for minocycline delivery. Carbohydr Polym 2024; 343:122455. [PMID: 39174092 DOI: 10.1016/j.carbpol.2024.122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
Collapse
Affiliation(s)
- Tutut Habibah
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Jana Matonohová
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia
| | | | - Una Fitzgerald
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | - Marek Ingr
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Martin Pravda
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia.
| | - Abhay Pandit
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | | |
Collapse
|
10
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
11
|
Chen N, Li S, Miao C, Zhao Q, Dong J, Li L, Li C. Polysaccharide-based hydrogels for cartilage regeneration. Front Cell Dev Biol 2024; 12:1444358. [PMID: 39463764 PMCID: PMC11503028 DOI: 10.3389/fcell.2024.1444358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024] Open
Abstract
Cartilage defect is one of the common tissue defect clinical diseases and may finally lead to osteoarthritis (OA) which threat patients' physical and psychological health. Polysaccharide is the main component of extracellular matrix (ECM) in cartilage tissue. In the past decades, polysaccharide-based hydrogels have shown great potential for cartilage regeneration considering unique qualities such as biocompatibility, enhanced cell proliferation, drug delivery, low toxicity, and many others. Structures such as chain length and chain branching make polysaccharides have different physical and chemical properties. In this review, cartilage diseases and current treatment options of polysaccharide-based hydrogels for cartilage defection repair were illustrated. We focus on how components and structures of recently developed materials affect the performance. The challenges and perspectives for polysaccharide-based hydrogels in cartilage repair and regeneration were also discussed in depth.
Collapse
Affiliation(s)
- Ning Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province, China
| | - Congrui Miao
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ci Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Fazel Anvari Yazdi A, Tahermanesh K, Ejlali M, Babaei-Ghazvini A, Acharya B, Badea I, MacPhee DJ, Chen X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front Bioeng Biotechnol 2024; 12:1418034. [PMID: 39416283 PMCID: PMC11480021 DOI: 10.3389/fbioe.2024.1418034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Decellularized uterine extracellular matrix has emerged as a pivotal focus in the realm of biomaterials, offering a promising source in uterine tissue regeneration, research on disease diagnosis and treatments, and ultimately uterine transplantation. In this study, we examined various protocols for decellularizing porcine uterine tissues, aimed to unravel the intricate dynamics of DNA removal, bioactive molecules preservation, and microstructural alterations. Methods Porcine uterine tissues were treated with 6 different, yet rigorously selected and designed, protocols with sodium dodecyl sulfate (SDS), Triton® X-100, peracetic acid + ethanol, and DNase I. After decellularization, we examined DNA quantification, histological staining (H&E and DAPI), glycosaminoglycans (GAG) assay, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). Results A comparative analysis among all 6 protocols was conducted with the results demonstrating that all protocols achieved decellularization; while 0.1% SDS + 1% Triton® X-100, coupled with agitation, demonstrated the highest efficiency in DNA removal. Also, it was found that DNase I played a key role in enhancing the efficiency of the decellularization process by underscoring its significance in digesting cellular contents and eliminating cell debris by 99.79% (19.63 ± 3.92 ng/mg dry weight). Conclusions Our findings enhance the nuanced understanding of DNA removal, GAG preservation, microstructural alteration, and protein decomposition in decellularized uterine extracellular matrix, while highlighting the importance of decellularization protocols designed for intended applications. This study along with our findings represents meaningful progress for advancing the field of uterine transplantation and related tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Kobra Tahermanesh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Ejlali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Sharma D, Satapathy BK. Nanostructured Biopolymer-Based Constructs for Cartilage Regeneration: Fabrication Techniques and Perspectives. Macromol Biosci 2024; 24:e2400125. [PMID: 38747219 DOI: 10.1002/mabi.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Indexed: 05/24/2024]
Abstract
The essential functions of cartilage, such as shock absorption and resilience, are hindered by its limited regenerative capacity. Although current therapies alleviate symptoms, novel strategies for cartilage regeneration are desperately needed. Recent developments in three-dimensional (3D) constructs aim to address this challenge by mimicking the intrinsic characteristics of native cartilage using biocompatible materials, with a significant emphasis on both functionality and stability. Through fabrication methods such as 3D printing and electrospinning, researchers are making progress in cartilage regeneration; nevertheless, it is still very difficult to translate these advances into clinical practice. The review emphasizes the importance of integrating various fabrication techniques to create stable 3D constructs. Meticulous design and material selection are required to achieve seamless cartilage integration and durability. The review outlines the need to address these challenges and focuses on the latest developments in the production of hybrid 3D constructs based on biodegradable and biocompatible polymers. Furthermore, the review acknowledges the limitations of current research and provides perspectives on potential avenues for effectively regenerating cartilage defects in the future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
14
|
Cui G, Yu X, He M, Huang S, Liu K, Li Y, Li J, Shao X, Lv Q, Li X, Tan M. Biological activity, limitations and steady-state delivery of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:1-50. [PMID: 39218500 DOI: 10.1016/bs.afnr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Food-related functional substances with biological activity serve as a crucial material foundation for achieving precision nutrition, which has gained increasing attraction in regulating physiological functions, preventing chronic diseases, and maintaining human health. Nutritional substances typically include bioactive proteins, peptides, polysaccharides, polyphenols, functional lipids, carotenoids, probiotics, vitamins, saponins, and terpenes. These functional substances play an essential role in precise nutrition. This chapter introduces and summarizes typical functional substances to demonstrate the challenges in precision nutrition for their stability, solubility, and bioavailability. The current status of delivery systems of functional substances is described to give an insight into the development of desirable characteristics, such as food grade status, high loading capacity, site targeting, and controlled release capacity. Finally, the applications of food-borne delivery systems of functional substances for precision nutrition are emphasized to meet the requirement for precision nutrition during nutritional intervention for chronic diseases.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Ming He
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoyang Shao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Qiyan Lv
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xueqian Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China.
| |
Collapse
|
15
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
16
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
17
|
Wang X, Wei W, Guo Z, Liu X, Liu J, Bing T, Yu Y, Yang X, Cai Q. Organic-inorganic composite hydrogels: compositions, properties, and applications in regenerative medicine. Biomater Sci 2024; 12:1079-1114. [PMID: 38240177 DOI: 10.1039/d3bm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Guo
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ju Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing 100176, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
18
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
19
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Friedman AK, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. Acta Biomater 2024; 174:116-126. [PMID: 38101556 PMCID: PMC10842894 DOI: 10.1016/j.actbio.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. This study focuses on the GAG molecules chondroitin sulfate (CS), dermatan sulfate (DS), and hyaluronic acid (HA). CS and DS are stereoisomers while HA is the only non-sulfated GAG. We characterized and decoupled the effects of these GAG molecules on the stiffness, transport, and matrix microarchitecture properties of type I collagen hydrogels using mechanical indentation testing, microfluidics, and confocal reflectance imaging, respectively. We complement these biophysical measurements with turbidity assays to profile collagen aggregate formation. Surprisingly, only HA enhanced the ECM indentation modulus, while all three GAGs had no effect on hydraulic permeability. Strikingly, we show that CS, DS, and HA differentially regulate the matrix microarchitecture of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs define key physical properties of the ECM, this work shows new ways in which stiffness measurements, microfluidics, microscopy, and turbidity kinetics can be used complementarily to reveal details of collagen self-assembly and structure. STATEMENT OF SIGNIFICANCE: Collagen and glycosaminoglycans (GAGs) are integral to the structure, function, and bioactivity of the extracellular matrix (ECM). Despite widespread interest in collagen-GAG composite hydrogels, there is a lack of quantitative understanding of how different GAGs alter the biophysical properties of the ECM across tissue, cellular, and subcellular length scales. Here we show using mechanical, microfluidic, microscopy, and analytical methods and measurements that the GAG molecules chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially regulate the mechanical, transport, and microstructural properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. As such, these results will inform improved design and utilization of collagen-based scaffolds of tailored composition, mechanical properties, molecular availability due to mass transport, and microarchitecture.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Alicia K Friedman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210, USA.
| |
Collapse
|
20
|
Liu Y, Liu X, Zhang Y, Cao Y, Luo B, Wang Z, Pei R. Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization. Biomacromolecules 2023; 24:5977-5988. [PMID: 37939799 DOI: 10.1021/acs.biomac.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Two-dimensional (2D) cell culture methods dominate the current research. However, the inherent responsiveness of cells to their native three-dimensional (3D) microenvironment necessitates a paradigm shift toward the development of advanced hydrogels that faithfully mimic the intricacies of the extracellular matrix (ECM) and enable continuous cell-ECM interactions. To address the constraints of traditional static hydrogel networks that impede effective cell-matrix and cell-cell interactions, and to tackle the inherent stability issues associated with dynamically cross-linked hydrogels, which have become a pressing concern. Herein, we present an interpenetrating polymer network (IPN) hydrogel (HA/Alg-RGD hydrogel) that combines a physically cross-linked network between alginate and calcium ions (Alg-Ca2+) for the enhanced cell growth adaptability with a chemically cross-linked hyaluronic acid (HA) network to ensure macroscopic stability during cell culture. The incorporation of arginine-glycine-aspartic peptide modified alginate (Alg-RGD) further facilitates cell adhesion and improves the cell-hydrogel interaction. Notably, this IPN hydrogel demonstrates mechanical stability and enables cell spreading and growth within its structural framework. Leveraging the reversible characteristics of the ionically cross-linked Alg-Ca2+ network within IPN hydrogels, we demonstrate the feasibility of the gelatin sacrificial solution for 3D printing purposes within the hydrogel matrix. Subsequent UV-induced covalent cross-linking enables the fabrication of vascularized microfluidic channels within the resulting construct. Our results demonstrate endothelial cell spreading and spontaneous cell sprouting within the hydrogel matrix, thus highlighting the efficacy of this IPN hydrogel system in facilitating 3D cell growth. Additionally, our study emphasizes the potential of 3D printed constructs as a promising approach for vascularization in tissue engineering. The importance of RGD peptides in promoting favorable cell-hydrogel scaffold interactions is also highlighted, emphasizing their critical role in optimizing biomaterial-cell interfaces.
Collapse
Affiliation(s)
- Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bingqing Luo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
21
|
Xiang C, Guo Z, Wang Z, Zhang J, Chen W, Li X, Wei X, Li P. Fabrication and characterization of porous, degradable, biocompatible poly(vinyl alcohol)/tannic acid/gelatin/hyaluronic acid hydrogels with good mechanical properties for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2198-2216. [PMID: 37403564 DOI: 10.1080/09205063.2023.2230855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
At present, articular cartilage repair and regeneration remain still one of the most concerned problems due to its poor self-healing capacity. Among the tissue engineering materials, hydrogel is considered an ideal candidate due to its similarity to extracellular matrices. Despite the good biocompatibility of gelatin and hyaluronic acid hydrogels, they are still limited to serve as tissue engineering materials by fast degradation rate and poor mechanical performances. In order to solve these problems, novel polyvinyl alcohol/tannic acid/gelatin/hyaluronic acid (PTGH) hydrogels are prepared by a facile physical crosslinked method. The PTGH hydrogels exhibit a high moisture content (85%) and porosity (87%). Meanwhile, the porous microstructures and mechanical properties (compressive strength: 0.85-2.59 MPa; compressive modulus: 57.88-124.27 kPa) can be controlled by adjusting the mass ratio of PT/GH. In vitro degradation analysis shows that the PTGH hydrogels can be degraded gradually in PBS solution with the presence of lysozyme. For this gel system, based on the hydrogen bonds among molecules, it improved the mechanical properties of gelatin and hyaluronic acid hydrogels. With the degradation of PTGH hydrogels, the release of gelatin and hyaluronic acid can have a continuous effort for the cartilage tissue regeneration and repair. In addition, in vitro cell culture results show that the PTGH hydrogels have no negative effects on chondrocytes growth and proliferation. In all, the PTGH hydrogels exhibit potential applications for articular cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zijian Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zehua Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
22
|
Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, Miguel SP, Loureiro J, Ribeiro MP, Coutinho P, Pagador JB, Sanchez-Margallo FM. Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications. Gels 2023; 9:890. [PMID: 37998980 PMCID: PMC10670821 DOI: 10.3390/gels9110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, tissue engineering has been dedicated to the development of 3D structures through bioprinting techniques that aim to obtain personalized, dynamic, and complex hydrogel 3D structures. Among the different materials used for the fabrication of such structures, proteins and polysaccharides are the main biological compounds (biopolymers) selected for the bioink formulation. These biomaterials obtained from natural sources are commonly compatible with tissues and cells (biocompatibility), friendly with biological digestion processes (biodegradability), and provide specific macromolecular structural and mechanical properties (biomimicry). However, the rheological behaviors of these natural-based bioinks constitute the main challenge of the cell-laden printing process (bioprinting). For this reason, bioprinting usually requires chemical modifications and/or inter-macromolecular crosslinking. In this sense, a comprehensive analysis describing these biopolymers (natural proteins and polysaccharides)-based bioinks, their modifications, and their stimuli-responsive nature is performed. This manuscript is organized into three sections: (1) tissue engineering application, (2) crosslinking, and (3) bioprinting techniques, analyzing the current challenges and strengths of biopolymers in bioprinting. In conclusion, all hydrogels try to resemble extracellular matrix properties for bioprinted structures while maintaining good printability and stability during the printing process.
Collapse
Affiliation(s)
- David Patrocinio
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Victor Galván-Chacón
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - J. Carlos Gómez-Blanco
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Sonia P. Miguel
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Jorge Loureiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J. Blas Pagador
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
| | - Francisco M. Sanchez-Margallo
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
- Scientific Direction, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| |
Collapse
|
23
|
Zhao X, Tang J, Liu Y, Hu B, Chen Q, Liu Y. Reaction kinetics of chitosan nanogels crosslinked by genipin. J Chromatogr A 2023; 1710:464427. [PMID: 37812945 DOI: 10.1016/j.chroma.2023.464427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Crosslinking of chitosan chains in dilute solution by natural crosslinker genipin leads to biocompatible nanogels. Here we investigated the reaction kinetics between chitosan and genipin in a 200 mM acetate buffer at 37 °C, and the structural and conformational evolutions of the nanogels during the crosslinking reaction by multi detection asymmetric flow field-flow fractionation (AF4). Upon crosslinking by genipin, the z-average hydrodynamic radius Rhz of the chitosan chains increased from 26 nm to 130 nm, while the weight average molar mass Mw increased from 2.0 × 105 g/mol to 1.8 × 107 g/mol. The crosslinking reaction appeared to be first-order and size-dependent. In particular, the intrachain crosslinking reaction was preferentially for nanogels having the larger size, leading to formation of branched chains/nanogels having a wide range of molar masses between 106 and 108 g/mol but a similar radius of gyration Rg ∼ 40 nm. For the largest nanogel fractions with M > 2.0 × 108 g/mol, both Rg and Rh showed a scaling relation with exponent 1/3 and a structure parameter Rg/Rh = 0.74, as expected for the hard sphere particle. The reaction was accompanied by a reduction of charge density and an increase in hydrophobicity of chitosan nanogels, which plays a key role in the formation of uniform size nanogels with chain density ρ(Rh) up to 0.45 g/cm3.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanhua Liu
- College of Food science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Hu
- College of Food science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
24
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
25
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
26
|
Gerardo‐Nava JL, Jansen J, Günther D, Klasen L, Thiebes AL, Niessing B, Bergerbit C, Meyer AA, Linkhorst J, Barth M, Akhyari P, Stingl J, Nagel S, Stiehl T, Lampert A, Leube R, Wessling M, Santoro F, Ingebrandt S, Jockenhoevel S, Herrmann A, Fischer H, Wagner W, Schmitt RH, Kiessling F, Kramann R, De Laporte L. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner. Adv Healthc Mater 2023; 12:e2301030. [PMID: 37311209 PMCID: PMC11468549 DOI: 10.1002/adhm.202301030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/21/2023] [Indexed: 06/15/2023]
Abstract
Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.
Collapse
|
27
|
Thomas J, Chopra V, Rajput S, Guha R, Chattopadhyay N, Ghosh D. Post-Implantation Stiffening by a Bioinspired, Double-Network, Self-Healing Hydrogel Facilitates Minimally Invasive Cell Delivery for Cartilage Regeneration. Biomacromolecules 2023. [PMID: 37376790 DOI: 10.1021/acs.biomac.3c00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Injectable hydrogels have demonstrated advantages in cartilage repair by enabling the delivery of cells through a minimally invasive approach. However, several injectable hydrogels suffer from rapid degradation and low mechanical strength. Moreover, higher mechanical stiffness in hydrogels can have a detrimental effect on post-implantation cell viability. To address these challenges, we developed an in situ forming bioinspired double network hydrogel (BDNH) that exhibits temperature-dependent stiffening after implantation. The BDNH mimics the microarchitecture of aggrecan, with hyaluronic acid-conjugated poly(N-isopropylacrylamide) providing rigidity and Schiff base crosslinked polymers serving as the ductile counterpart. BDNHs exhibited self-healing property and enhanced stiffness at physiological temperature. Excellent cell viability, long time cell proliferation, and cartilage specific matrix production were observed in the chondrocytes cultured in the BDNH hydrogel. Evidence of cartilage regeneration in a rabbit cartilage defect model using chondrocyte-laden BDNH has suggested it to be a potential candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
28
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541626. [PMID: 37293049 PMCID: PMC10245839 DOI: 10.1101/2023.05.22.541626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. Here we characterized and decoupled the effects of the GAG molecules chondroitin sulfate (CS) dermatan sulfate (DS) and hyaluronic acid (HA) on the stiffness (indentation modulus), transport (hydraulic permeability), and matrix microarchitecture (pore size and fiber radius) properties of collagen-based hydrogels. We complement these biophysical measurements of collagen hydrogels with turbidity assays to profile collagen aggregate formation. Here we show that CS, DS, and HA differentially regulate the biophysical properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs play significant roles in defining key physical properties of the ECM, this work shows new ways in which stiffness measurements, microscopy, microfluidics, and turbidity kinetics can be used complementary to reveal details of collagen self-assembly and structure.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210
| |
Collapse
|
29
|
Kilian D, Poddar A, Desrochers V, Heinemann C, Halfter N, Liu S, Rother S, Gelinsky M, Hintze V, Lode A. Cellular adhesion and chondrogenic differentiation inside an alginate-based bioink in response to tailorable artificial matrices and tannic acid treatment. BIOMATERIALS ADVANCES 2023; 147:213319. [PMID: 36758282 DOI: 10.1016/j.bioadv.2023.213319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Many established bioinks fulfill important requirements regarding fabrication standards and cytocompatibility. Current research focuses on development of functionalized bioinks with an improved support of tissue-specific cell differentiation. Many approaches primarily depend on decellularized extracellular matrices or blood components. In this study, we investigated the combination of a highly viscous alginate-methylcellulose (algMC) bioink with collagen-based artificial extracellular matrix (aECM) as a finely controllable and tailorable system composed of collagen type I (col) with and without chondroitin sulfate (CS) or sulfated hyaluronan (sHA). As an additional stabilizer, the polyphenol tannic acid (TA) was integrated into the inks. The assessment of rheological properties and printability as well as hydrogel microstructure revealed no adverse effect of the integrated components on the inks. Viability, adhesion, and proliferation of bioprinted immortalized human mesenchymal stem cells (hTERT-MSC) was improved indicating enhanced interaction with the designed microenvironment. Furthermore, chondrogenic matrix production (collagen type II and sulfated glycosaminoglycans) by primary human chondrocytes (hChon) was enhanced by aECM. Supplementing the inks with TA was required for these positive effects but caused cytotoxicity as soon as TA concentrations exceeded a certain amount. Thus, combining tailorable aECM with algMC and balanced TA addition proved to be a promising approach for promoting adhesion of immortalized stem cells and differentiation of chondrocytes in bioprinted scaffolds.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Aayush Poddar
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vanessa Desrochers
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany; Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Saar, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
30
|
Bhat AA, Gupta G, Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, MacLoughlin R, Oliver BG, Dua K. Polysaccharide-Based Nanomedicines Targeting Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122788. [PMID: 36559281 PMCID: PMC9782996 DOI: 10.3390/pharmaceutics14122788] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
A primary illness that accounts for a significant portion of fatalities worldwide is cancer. Among the main malignancies, lung cancer is recognised as the most chronic kind of cancer around the globe. Radiation treatment, surgery, and chemotherapy are some medical procedures used in the traditional care of lung cancer. However, these methods lack selectivity and damage nearby healthy cells. Several polysaccharide-based nanomaterials have been created to transport chemotherapeutics to reduce harmful and adverse side effects and improve response during anti-tumour reactions. To address these drawbacks, a class of naturally occurring polymers called polysaccharides have special physical, chemical, and biological characteristics. They can interact with the immune system to induce a better immunological response. Furthermore, because of the flexibility of their structures, it is possible to create multifunctional nanocomposites with excellent stability and bioavailability for the delivery of medicines to tumour tissues. This study seeks to present new views on the use of polysaccharide-based chemotherapeutics and to highlight current developments in polysaccharide-based nanomedicines for lung cancer.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School and of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Gaurav Gupta
- School and of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
- Correspondence:
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2000, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
31
|
Damen AHA, Schuiringa GH, Ito K, van Donkelaar CC. The effect of HydroSpacer implant placement on the wear of opposing and adjacent cartilage. J Orthop Res 2022. [PMID: 36403126 DOI: 10.1002/jor.25487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
A HydroSpacer implant, that is, a swelling hydrogel confined by a spacer fabric, was developed to repair focal cartilage defects and to prevent progression into osteoarthritis. The present study evaluated the effect of implant placement height in an osteochondral (OC) plug on wear of the opposing and adjacent cartilage. Three-dimensional warp-knitted spacer fabrics, polycaprolactone with poly(4-hydroxybutyrate) pile yarns, were filled with a hyaluronic acid methacrylate and chondroitin sulfate methacrylate hydrogel. After polymerization of the hydrogel, these HydroSpacers were implanted in OC defects (ø 6 mm) created in bovine OC plugs (ø 10 mm) and allowed to swell to equilibrium. A custom-made pin-on-plate wear apparatus was used to apply simultaneous compression and sliding against bovine cartilage. Cartilage damage, visualized with Indian ink, was only seen for the group in which the HydroSpacer was placed flush with the surrounding cartilage. A significant increase on average surface roughness of the sliding path compared to the adjacent cartilage confirmed surface damage for this group. When the implants were recessed (with and without extra hydrogel layer on top of the implant), this damage was not observed, but the cartilage surrounding the implants was compressed (without damage) indicating substantial load sharing with the implant. Furthermore, it was shown that all defects treated with a HydroSpacer implant resulted in shear forces comparable to intact cartilage. Clinical significance: The present study suggests that placing a HydroSpacer implant recessed into the surrounding cartilage would decrease wear of the opposing cartilage. Altogether, this study supports the development of textile-constraining hydrogels for cartilage replacement.
Collapse
Affiliation(s)
- Alicia H A Damen
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gerke H Schuiringa
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C van Donkelaar
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
32
|
Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 2022; 17:100495. [PMID: 36420054 PMCID: PMC9676212 DOI: 10.1016/j.mtbio.2022.100495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
Damage to cartilage tissues is often difficult to repair owing to chronic inflammation and a lack of bioactive factors. Therefore, developing bioactive materials, such as hydrogels acting as extracellular matrix mimics, that can inhibit the inflammatory microenvironment and promote cartilage repair is crucial. Hyaluronic acid, which exists in cartilage and synovial fluid, has been extensively investigated for cartilage tissue engineering because of its promotion of cell adhesion and proliferation, regulation of inflammation, and enhancement of cartilage regeneration. However, hyaluronic acid-based hydrogels have poor degradation rates and unfavorable mechanical properties, limiting their application in cartilage tissue engineering. Recently, various multifunctional hyaluronic acid-based hydrogels, including alkenyl, aldehyde, thiolated, phenolized, hydrazide, and host–guest group-modified hydrogels, have been extensively studied for use in cartilage tissue engineering. In this review, we summarize the recent progress in the multifunctional design of hyaluronic acid-based hydrogels and their application in cartilage tissue engineering. Moreover, we outline the future research prospects and directions in cartilage tissue regeneration. This would provide theoretical guidance for developing hyaluronic acid-based hydrogels with specific properties to satisfy the requirements of cartilage tissue repair.
Collapse
|
33
|
Han Y, Cao Y, Lei H. Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels 2022; 8:577. [PMID: 36135289 PMCID: PMC9498565 DOI: 10.3390/gels8090577] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels are crosslinked polymer networks with time-dependent mechanical response. The overall mechanical properties are correlated with the dynamics of the crosslinks. Generally, hydrogels crosslinked by permanent chemical crosslinks are strong but static, while hydrogels crosslinked by physical interactions are weak but dynamic. It is highly desirable to create synthetic hydrogels that possess strong mechanical stability yet remain dynamic for various applications, such as drug delivery cargos, tissue engineering scaffolds, and shape-memory materials. Recently, with the introduction of dynamic covalent chemistry, the seemingly conflicting mechanical properties, i.e., stability and dynamics, have been successfully combined in the same hydrogels. Dynamic covalent bonds are mechanically stable yet still capable of exchanging, dissociating, or switching in response to external stimuli, empowering the hydrogels with self-healing properties, injectability and suitability for postprocessing and additive manufacturing. Here in this review, we first summarize the common dynamic covalent bonds used in hydrogel networks based on various chemical reaction mechanisms and the mechanical strength of these bonds at the single molecule level. Next, we discuss how dynamic covalent chemistry makes hydrogel materials more dynamic from the materials perspective. Furthermore, we highlight the challenges and future perspectives of dynamic covalent hydrogels.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Díaz A, Herrada-Manchón H, Nunes J, Lopez A, Díaz N, Grande HJ, Loinaz I, Alejandro Fernández M, Dupin D. 3D Printable Dynamic Hydrogel: As Simple as it Gets! Macromol Rapid Commun 2022; 43:e2200449. [PMID: 35904533 DOI: 10.1002/marc.202200449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Indexed: 11/09/2022]
Abstract
3D Printing technology offers a vast range of applications for tissue engineering applications. Over the past decade a vast range of new equipment has been developed; while, 3D printable biomaterials, especially hydrogels, are investigated to fit the printability requirements. The current candidates for bioprinting often requires post-printing cross-linking to maintain their shape. On the other hand, dynamic hydrogels are considered as the most promising candidate for this application with their extrudability and self-healing properties. However, it proves to be very difficult to match the required rheological in a simple material. Here, we present for the first time the simplest formulation of a dynamic hydrogel based on thiol-functionalized hyaluronic acid formulated with gold ions that fulfill all the requirements to be printed without the use of external stimuli, as judged by the rheological studies. The printability was also demonstrated with a 3D printer allowing to print the dynamic hydrogel as it is, achieving 3D construct with a relatively good precision and up to 24 layers, corresponding to 10 mm high. This material is the simplest 3D printable hydrogel and its mixture with cells and biological compounds is expected to open a new era in 3D bioprinting. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aitor Díaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain
| | - Helena Herrada-Manchón
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda Jardín Botánico 1345, Gijón, 33203, Spain
| | - Juliana Nunes
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain
| | - Aitziber Lopez
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain
| | - Natividad Díaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain
| | - Hans-Jürgen Grande
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain.,POLYMAT, University of the Basque Country, UPV/EHU, Avda. Tolosa 72, Donostia San Sebastian, 20018, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain
| | - M Alejandro Fernández
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda Jardín Botánico 1345, Gijón, 33203, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián, 20014, Spain
| |
Collapse
|
35
|
Schuiringa GH, Mihajlovic M, van Donkelaar CC, Vermonden T, Ito K. Creating a Functional Biomimetic Cartilage Implant Using Hydrogels Based on Methacrylated Chondroitin Sulfate and Hyaluronic Acid. Gels 2022; 8:gels8070457. [PMID: 35877542 PMCID: PMC9315485 DOI: 10.3390/gels8070457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The load-bearing function of articular cartilage tissue contrasts with the poor load-bearing capacity of most soft hydrogels used for its regeneration. The present study explores whether a hydrogel based on the methacrylated natural polymers chondroitin sulfate (CSMA) and hyaluronic acid (HAMA), injected into warp-knitted spacer fabrics, could be used to create a biomimetic construct with cartilage-like mechanical properties. The swelling ratio of the combined CSMA/HAMA hydrogels in the first 20 days was higher for hydrogels with a higher CSMA concentration, and these hydrogels also degraded quicker, whereas those with a 1.33 wt% of HAMA were stable for more than 120 days. When confined by a polyamide 6 (PA6) spacer fabric, the volumetric swelling of the combined CSMA/HAMA gels (10 wt%, 6.5 × CSMA:HAMA ratio) was reduced by ~53%. Both the apparent peak and the equilibrium modulus significantly increased in the PA6-restricted constructs compared to the free-swelling hydrogels after 28 days of swelling, and no significant differences in the moduli and time constant compared to native bovine cartilage were observed. Moreover, the cell viability in the CSMA/HAMA PA6 constructs was comparable to that in gelatin–methacrylamide (GelMA) PA6 constructs at one day after polymerization. These results suggest that using a HydroSpacer construct with an extracellular matrix (ECM)-like biopolymer-based hydrogel is a promising approach for mimicking the load-bearing properties of native cartilage.
Collapse
Affiliation(s)
- Gerke H. Schuiringa
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
| | - Marko Mihajlovic
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
- Correspondence:
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (G.H.S.); (M.M.); (K.I.)
| |
Collapse
|
36
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
37
|
Carvalho EM, Kumar S. Lose the stress: Viscoelastic materials for cell engineering. Acta Biomater 2022; 163:146-157. [PMID: 35405329 DOI: 10.1016/j.actbio.2022.03.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Biomaterials are widely used to study and control a variety of cell behaviors, including stem cell differentiation, organogenesis, and tumor invasion. While considerable attention has historically been paid to biomaterial elastic (storage) properties, it has recently become clear that viscous (loss) properties can also powerfully influence cell behavior. Here we review advances in viscoelastic materials for cell engineering. We begin by discussing collagen, an abundant naturally occurring biomaterial that derives its viscoelastic properties from its fibrillar architecture, which enables dissipation of applied stresses. We then turn to two other naturally occurring biomaterials that are more frequently modified for engineering applications, alginate and hyaluronic acid, whose viscoelastic properties may be tuned by modulating network composition and crosslinking. We also discuss the potential of exploiting engineered fibrous materials, particularly electrospun fiber-based materials, to control viscoelastic properties. Finally, we review mechanisms through which cells process viscous and viscoelastic cues as they move along and within these materials. The ability of viscoelastic materials to relax cell-imposed stresses can dramatically alter migration on two-dimensional surfaces and confinement-imposed barriers to engraftment and infiltration in three-dimensional scaffolds. STATEMENT OF SIGNIFICANCE: Most tissues and many biomaterials exhibit some viscous character, a property that is increasingly understood to influence cell behavior in profound ways. This review discusses the origin and significance of viscoelastic properties of common biomaterials, as well as how these cues are processed by cells to influence migration. A deeper understanding of the mechanisms of viscoelastic behavior in biomaterials and how cells interpret these inputs should aid the design and selection of biomaterials for specific applications.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; San Francisco Graduate, Program in Bioengineering, University of California, Berkeley-University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|