1
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
2
|
Jing R, Pennisi CP, Nielsen TT, Larsen KL. Advanced supramolecular hydrogels and their applications in the formulation of next-generation bioinks for tissue engineering: A review. Int J Biol Macromol 2025:143461. [PMID: 40280522 DOI: 10.1016/j.ijbiomac.2025.143461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Supramolecular hydrogels are three-dimensional structures composed of cross-linked macromolecules interconnected by dynamic physical bonds, which allow them to absorb and retain significant volumes of water. Their intrinsic properties, such as viscoelasticity, self-healing capabilities, and high water content, render them promising materials for cell-laden scaffolds utilized in bioinks. This review systematically summarizes the current state-of-the-art advancements in hydrogels for tissue engineering, categorizing them based on the nature of their supramolecular interactions. Particular emphasis is placed on the classification of supramolecular hydrogels and their associated properties, including kinetics, mechanical characteristics, responsiveness, and swelling behavior. The review specifically addresses the criteria that hydrogels must fulfill prior to their application in bioinks. Achieving biocompatibility and bioactivity necessitates the careful selection of hydrogel compositions with suitable properties, as well as the incorporation of external organic or inorganic bioactive molecules. Methods for measuring and enhancing biophysical and biochemical properties are discussed in detail, alongside an exploration of the unique requirements of bioinks tailored for each additive manufacturing method. This review paper serves as an instructive resource for the construction and characterization of supramolecular hydrogels, facilitating their application in bioinks for tissue engineering.
Collapse
Affiliation(s)
- Ruiqi Jing
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Cristian P Pennisi
- Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Thorbjørn T Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Kim L Larsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Zhao J, Hu Y, Li H, Liu C, Nie Z, Chen Z, Ling Q, Li Z, Zhao P, Song B, Zhang K, Bian L. Liquid-Liquid Phase Separation-Mediated Cellular-Scale Compartmentalization of Hydrogel Covalent Cross-Linking Promotes Microtubule-Based Mechanosensing. J Am Chem Soc 2025. [PMID: 40252026 DOI: 10.1021/jacs.5c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Controlled liquid-liquid phase separation (LLPS) plays an important role in the formation of a heterogeneously structured extracellular matrix (ECM) consisting of densely cross-linked stiff structures compartmentalized in a loosely cross-linked matrix. Moreover, the mechanical cues presented by the cellular-scale structural heterogeneity of the ECM facilitate the mechanotransduction of cells and subsequent cellular development. Therefore, developing ECM-mimetic hydrogels with compartmentalized structural heterogeneity as inductive cell carriers is highly desirable but challenging. Inspired by the ECM formation process, we capitalized on the temperature-assisted LLPS of a custom-designed temperature-responsive macromer (TRM) to concentrate and compartmentalize the TRM in the dense phase of the phase-separated precursor solution while keeping the gelatin comacromer complex in the dilute phase. The subsequent cross-linking produces the cellular (micron)-scale microdomains with dense covalent cross-linking interspersed in the loosely cross-linked cell-adaptable interdomain hydrogel matrix. The obtained ECM-mimetic heterogeneous hydrogel, which is solely cross-linked by covalent bonds, promotes extensive spreading, microtubule-based mechanotransduction, and autophagic flux of encapsulated human mesenchymal stem cells (hMSCs), thereby enhancing osteogenesis and bone regeneration. Our findings not only provide valuable guidance for the fabrication of ECM-mimetic biomaterials via LLPS-mediated assembly but also shed light on the mechanobiological mechanism underlying the regulation of cellular development by mechanical cues of the ECM.
Collapse
Affiliation(s)
- Jianyang Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuan Hu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Hao Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Caikun Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zhiqiang Nie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zekun Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Qiangjun Ling
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, P.R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bin Song
- Department of Joint Surgery and Sports Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
4
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
5
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
6
|
Zhu J, Xie F, Qiu Z, Chen L. Effect of active carbonyl-carboxyl ratio on dynamic Schiff base crosslinking and its modulation of high-performance oxidized starch-chitosan hydrogel by hot extrusion 3D printing. Carbohydr Polym 2024; 343:122438. [PMID: 39174083 DOI: 10.1016/j.carbpol.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024]
Abstract
The quest to develop 3D starch-based printing hydrogels for the controlled release of active substances with excellent mechanical and printing properties has gained significant attention. This work introduced a facile method based on crosslinking via Schiff base reaction for preparing bicomponent hydrogels. The method involved the utilization of customizable oxidized starch (OS) and chitosan (CS), enabling superior printing performance through the precise control of various active carbonyl-carboxyl ratios (ACR, 2:1, 1:1, and 2:3, respectively) of OS. OS-CS hydrogel (OSC) with an ACR level of 2:1 (OS-2-y%CS) underwent rearrangement during printing environment, fostering increased Schiff base reaction with a higher crosslinking degree and robust high structural recovery (>95 %). However, with decreasing ACR levels (from 2:1 to 2:3), the printing performance and mechanical strength of printed OSC (POSC) declined due to lower Schiff base bonds and increased phase separation. Compared with printed OS, POS-2-2%CS exhibited a remarkable 1250.52 % increase in tensile strength and a substantial 2424.71 % boost in compressive strength, enhanced shape fidelity and notable self-healing properties. Moreover, POS-2-2%CS exhibited stable diffusive drug release, showing potential application in the pH-responsive release of active substances. Overall, controlling the active carbonyl-carboxyl ratios provided an efficient and manageable approach for preparing high-performance 3D-printed hydrogels.
Collapse
Affiliation(s)
- Junchao Zhu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Zhipeng Qiu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Li Z, Zhou D. Acrylate-Based PEG Hydrogels with Ultrafast Biodegradability for 3D Cell Culture. Biomacromolecules 2024; 25:6195-6202. [PMID: 39136362 DOI: 10.1021/acs.biomac.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels are particularly challenging to degrade, which hinders efficient cell harvesting within the gel matrix. Here, highly branched copolymers of PEG methyl ether acrylate (PEGMA) and disulfide diacrylate (DSDA) (PEG-DS) with short primary chains and multiple pendent vinyl groups were synthesized by a "vinyl oligomer combination" approach. PEG-DS readily cross-links with thiolated gelatin (Gel-SH) to form hydrogels. Results demonstrate that shortening the primary chains of PEG-DS significantly enhances the viability of bone marrow mesenchymal stem cells (BMSCs) by up to 193.2%. Importantly, DS junctions can be easily cleaved into short primary chains using dithiothreitol (DTT), triggering ultrafast degradation of PEG-DS/Gel-SH hydrogels within 2 min under mild conditions and release of the encapsulated BMSCs. This study establishes a novel strategy to enhance the degradation of acrylate-based PEG hydrogels for three-dimensional (3D) cell culture and harvesting. These findings expand the potential applications of such hydrogels in various biomedical fields.
Collapse
Affiliation(s)
- Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Park J, Kim H, Ham J, Lee W, Koh WG. Cell-adhesive double network self-healing hydrogel capable of cell and drug encapsulation: New platform to construct biomimetic environment with bottom-up approach. Carbohydr Polym 2024; 338:122204. [PMID: 38763712 DOI: 10.1016/j.carbpol.2024.122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
This study presents the development and characterization of a novel double-network self-healing hydrogel based on N-carboxyethyl chitosan (CEC) and oxidized dextran (OD) with the incorporation of crosslinked collagen (CEC-OD/COL-GP) to enhance its biological and physicochemical properties. The hydrogel formed via dynamic imine bond formation exhibited efficient self-healing within 30 min, and a compressive modulus recovery of 92 % within 2 h. In addition to its self-healing ability, CEC-OD/COL-GP possesses unique physicochemical characteristics including transparency, injectability, and adhesiveness to various substrates and tissues. Cell encapsulation studies confirmed the biocompatibility and suitability of the hydrogel as a cell-culture scaffold, with the presence of a collagen network that enhances cell adhesion, spreading, long-term cell viability, and proliferation. Leveraging their unique properties, we engineered assemblies of self-healing hydrogel modules for controlled spatiotemporal drug delivery and constructed co-culture models that simulate angiogenesis in tumor microenvironments. Overall, the CEC-OD/COL-GP hydrogel is a versatile and promising material for biomedical applications, offering a bottom-up approach for constructing complex structures with self-healing capabilities, controlled drug release, and support for diverse cell types in 3D environments. This hydrogel platform has considerable potential for advancements in tissue engineering and therapeutic interventions.
Collapse
Affiliation(s)
- JaeWook Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunji Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeongwoo Ham
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonjae Lee
- Departments of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Tsai CC, Chandel AKS, Mitsuhashi K, Fujiyabu T, Inagaki NF, Ito T. Injectable, Shear-Thinning, Self-Healing, and Self-Cross-Linkable Benzaldehyde-Conjugated Chitosan Hydrogels as a Tissue Adhesive. Biomacromolecules 2024; 25:1084-1095. [PMID: 38289249 DOI: 10.1021/acs.biomac.3c01117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Benzaldehyde-conjugated chitosan (CH-CBA) was synthesized by a coupling reaction between chitosan (CH) and carboxybenzaldehyde (CBA). The pH-sensitive self-cross-linking can be achieved through the Schiff base reaction. The degree of substitution (DS) of CH-CBA was controlled at 1.4-12.7% by optimizing the pH and reagent stoichiometry. The dynamic Schiff base linkages conferred strong shear-thinning and self-healing properties to the hydrogels. The viscosity of the 2 wt/v % CH-CBA hydrogel decreased from 5.3 × 107 mPa·s at a shear rate of 10-2 s-1 to 2.0 × 103 mPa·s at 102 s-1 at pH 7.4. The CH-CBA hydrogel exhibited excellent biocompatibility in vitro and in vivo. Moreover, the hydrogel adhered strongly to porcine small intestine, colon, and cecum samples, comparable to commercial fibrin glue, and exhibited effective in vivo tissue sealing in a mouse cecal ligation and puncture model, highlighting its potential as a biomaterial for application in tissue adhesives, tissue engineering scaffolds, etc.
Collapse
Affiliation(s)
- Ching-Cheng Tsai
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Arvind K Singh Chandel
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Fujiyabu
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Radiology and Biomedical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Wu TY, Huang CC, Tsai HC, Lin TK, Chen PY, Darge HF, Hong ZX, Harn HJ, Lin SZ, Lai JY, Chen YS. Mucin-mediated mucosal retention via end-terminal modified Pluronic F127-based hydrogel to increase drug accumulation in the lungs. BIOMATERIALS ADVANCES 2024; 156:213722. [PMID: 38101076 DOI: 10.1016/j.bioadv.2023.213722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. β-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.
Collapse
Affiliation(s)
- Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chun-Chiang Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 302, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Tzu-Kai Lin
- Department of Dermatology, Skin Institute, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Dermatology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Tzu Chi University of Science and Technology, Hualien 970, Taiwan, ROC.
| |
Collapse
|
12
|
Sithole MN, Mndlovu H, du Toit LC, Choonara YE. Advances in Stimuli-responsive Hydrogels for Tissue Engineering and Regenerative Medicine Applications: A Review Towards Improving Structural Design for 3D Printing. Curr Pharm Des 2023; 29:3187-3205. [PMID: 37779402 DOI: 10.2174/0113816128246888230920060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 10/03/2023]
Abstract
The physicochemical properties of polymeric hydrogels render them attractive for the development of 3D printed prototypes for tissue engineering in regenerative medicine. Significant effort has been made to design hydrogels with desirable attributes that facilitate 3D printability. In addition, there is significant interest in exploring stimuli-responsive hydrogels to support automated 3D printing into more structurally organised prototypes such as customizable bio-scaffolds for regenerative medicine applications. Synthesizing stimuli-responsive hydrogels is dependent on the type of design and modulation of various polymeric materials to open novel opportunities for applications in biomedicine and bio-engineering. In this review, the salient advances made in the design of stimuli-responsive polymeric hydrogels for 3D printing in tissue engineering are discussed with a specific focus on the different methods of manipulation to develop 3D printed stimuli-responsive polymeric hydrogels. Polymeric functionalisation, nano-enabling and crosslinking are amongst the most common manipulative attributes that affect the assembly and structure of 3D printed bio-scaffolds and their stimuli- responsiveness. The review also provides a concise incursion into the various applications of stimuli to enhance the automated production of structurally organized 3D printed medical prototypes.
Collapse
Affiliation(s)
- Mduduzi Nkosinathi Sithole
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Hillary Mndlovu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| |
Collapse
|
13
|
Li X, Xu X, Xu M, Geng Z, Ji P, Liu Y. Hydrogel systems for targeted cancer therapy. Front Bioeng Biotechnol 2023; 11:1140436. [PMID: 36873346 PMCID: PMC9977812 DOI: 10.3389/fbioe.2023.1140436] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
When hydrogel materials with excellent biocompatibility and biodegradability are used as excellent new drug carriers in the treatment of cancer, they confer the following three advantages. First, hydrogel materials can be used as a precise and controlled drug release systems, which can continuously and sequentially release chemotherapeutic drugs, radionuclides, immunosuppressants, hyperthermia agents, phototherapy agents and other substances and are widely used in the treatment of cancer through radiotherapy, chemotherapy, immunotherapy, hyperthermia, photodynamic therapy and photothermal therapy. Second, hydrogel materials have multiple sizes and multiple delivery routes, which can be targeted to different locations and types of cancer. This greatly improves the targeting of drugs, thereby reducing the dose of drugs and improving treatment effectiveness. Finally, hydrogel can intelligently respond to environmental changes according to internal and external environmental stimuli so that anti-cancer active substances can be remotely controlled and released on demand. Combining the abovementioned advantages, hydrogel materials have transformed into a hit in the field of cancer treatment, bringing hope to further increase the survival rate and quality of life of patients with cancer.
Collapse
Affiliation(s)
- Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Mengfei Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ping Ji
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| |
Collapse
|
14
|
Antignano I, D’Acunzo F, Arena D, Casciardi S, Del Giudice A, Gentile F, Pelosi M, Masci G, Gentili P. Influence of Nanoaggregation Routes on the Structure and Thermal Behavior of Multiple-Stimuli-Responsive Micelles from Block Copolymers of Oligo(ethylene glycol) Methacrylate and the Weak Acid [2-(Hydroxyimino)aldehyde]butyl Methacrylate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14371-14386. [PMID: 36346681 PMCID: PMC9686140 DOI: 10.1021/acs.langmuir.2c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, we compare nanoaggregation driven by pH-induced micellization (PIM) and by the standard solvent displacement (SD) method on a series of pH-, light-, and thermosensitive amphiphilic block copolymers. Specifically, we investigate poly(HIABMA)-b-poly(OEGMA) and poly(HIABMA)-b-poly(DEGMA-r-OEGMA), where HIABMA = [(hydroxyimino)aldehyde]butyl methacrylate, OEGMA = oligo(ethylene glycol)methyl ether methacrylate, and DEGMA = di(ethylene glycol)methyl ether methacrylate. The weakly acidic HIA group (pKa ≈ 8) imparts stability to micelles at neutral pH, unlike most of the pH-responsive copolymers investigated in the literature. With SD, only some of our copolymers yield polymeric micelles (34-59 nm), and their thermoresponsivity is either poor or altogether absent. In contrast, PIM affords thermoresponsive, smaller micelles (down to 24 nm), regardless of the polymer composition. In some cases, cloud points are remarkably well defined and exhibit limited hysteresis. By combining turbidimetric, dyamic light scattering, and small-angle X-ray scattering measurements, we show that SD yields loose micelles with POEGMA segments partly involved in the formation of the hydrophobic core, whereas PIM yields more compact core-shell micelles with a well-defined PHIABMA core. We conclude that pH-based nanoaggregation provides advantages over block-selective solvation to obtain compact micelles exhibiting well-defined responses to external stimuli.
Collapse
Affiliation(s)
- Irene Antignano
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Francesca D’Acunzo
- Institute
of Biological Systems (ISB), Italian National Research Council (CNR),
Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Roma, Italy
| | - Davide Arena
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Stefano Casciardi
- National
Institute for Insurance Against Accidents at Work (INAIL Research),
Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00078Monte Porzio Catone (Rome), Italy
| | | | - Francesca Gentile
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Maria Pelosi
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Giancarlo Masci
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Patrizia Gentili
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
- Institute
of Biological Systems (ISB), Italian National Research Council (CNR),
Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Roma, Italy
| |
Collapse
|