1
|
Kröger M, Pääkkönen T, Fliri L, Lehrhofer AF, Sulaeva I, Potthast A, Kontturi E. Surface-Vinylated Cellulose Nanocrystals as Cross-Linkers for Hydrogel Composites. Biomacromolecules 2025; 26:2282-2292. [PMID: 40067881 PMCID: PMC12004536 DOI: 10.1021/acs.biomac.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Cellulose nanocrystal (CNC) fillers have been shown to significantly improve the performance of polymer composites and hydrogels, elevating both strength and toughness. Polymer grafting from the surface of the nanocrystals has been employed to enhance matrix-filler interactions and keep the fillers dispersed within the matrix. However, such approaches often rely on multistep syntheses and diligent process control. Here, we propose modifying the nanocrystal surface to carry vinyl moieties, turning the particles into cross-linking comonomers. Using allyl glycidyl ether in an aqueous modification route, we were able to decorate the CNCs with varying amounts of vinyl moieties. Subsequent dispersion in 2-hydroxy methacrylate and thermally initiated free radical polymerization yielded composite materials that showed superior mechanical performance compared to those obtained from monomeric cross-linkers and unmodified CNCs. The large discrepancies in the observed glass transition temperatures of the obtained materials suggest, however, that the impact of the fillers on the polymerization kinetics is significant and less easily explained.
Collapse
Affiliation(s)
- Marcel Kröger
- Department
of Bioproducts and Biosystems, Aalto University, Aalto FI-00076, Finland
| | - Timo Pääkkönen
- Department
of Bioproducts and Biosystems, Aalto University, Aalto FI-00076, Finland
- Nordic
Bioproducts Group Oy, Tietotie 1, Espoo 02150, Finland
| | - Lukas Fliri
- Department
of Bioproducts and Biosystems, Aalto University, Aalto FI-00076, Finland
| | - Anna F. Lehrhofer
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, (BOKU), Muthgasse 18, Vienna A-1190, Austria
| | - Irina Sulaeva
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, (BOKU), Muthgasse 18, Vienna A-1190, Austria
- Core
Facility “Analysis of Lignocellulosics” (Alice), University of Natural Resources and Life Sciences, (BOKU), Konrad-Lorenz Strasse 24, Tulln, Vienna A-3430, Austria
| | - Antje Potthast
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, (BOKU), Muthgasse 18, Vienna A-1190, Austria
- Core
Facility “Analysis of Lignocellulosics” (Alice), University of Natural Resources and Life Sciences, (BOKU), Konrad-Lorenz Strasse 24, Tulln, Vienna A-3430, Austria
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, Aalto University, Aalto FI-00076, Finland
| |
Collapse
|
2
|
D'Acierno F, Capron I. Wetting and emulsification properties of cellulose nanocrystals modified with tannic acid and alkyl cellulose derivatives. J Colloid Interface Sci 2025; 679:868-882. [PMID: 39486226 DOI: 10.1016/j.jcis.2024.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
HYPOTHESIS Cellulose nanocrystals (CNCs) are sustainable rod-like nanoparticles that can be used to stabilize oil-in-water emulsions and can create hydrophilic coatings. Modifying the surface of CNCs can improve emulsion properties and allow for adjustable wettability. EXPERIMENTS This study explores the improvement of Pickering emulsion properties for various oils and the adjustability of coated surfaces through the physical modification of CNCs, without chemical functionalization. Bio-based additives, including antioxidant tannic acid (TA), methyl cellulose (MC), and ethyl cellulose (EC) were used as surface modifiers. The identification of optimal formulations involved varying the weight fraction of the alkyl cellulose derivatives. FINDINGS The findings suggest that, akin to pure CNCs, Pickering emulsions stabilized by TA and/or MC-modified CNCs demonstrate comparably high stability. The introduction of MC at a low weight fraction enhances hydrophilicity, and AFM analysis reveals smooth surfaces, mitigating the potential influence of roughness. In contrast, EC-modified CNCs result in less stable emulsions but exhibit more hydrophobic surfaces. This translates to a broad spectrum of characteristics, ranging from quasi-superhydrophilic to nearly hydrophobic (with contact angles spanning from below 11° up to 68°), all controllable through a straightforward physical coating process. This facile preparation of coated CNCs provides a versatile approach to customizing the wetting and emulsification properties of nanomaterials.
Collapse
Affiliation(s)
- Francesco D'Acierno
- UR1268 Biopolymères Interactions Assemblages, INRAE, F-44316 Nantes, France.
| | - Isabelle Capron
- UR1268 Biopolymères Interactions Assemblages, INRAE, F-44316 Nantes, France.
| |
Collapse
|
3
|
Pan S, Yang H, Qiu Z. Influence of Low Loadings of Cellulose Nanocrystals on the Simultaneously Enhanced Crystallization Rate, Mechanical Property, and Hydrophilicity of Biobased Poly(butylene 2,5-furandicarboxylate). Polymers (Basel) 2025; 17:196. [PMID: 39861267 PMCID: PMC11768259 DOI: 10.3390/polym17020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
In this research, fully biobased composites consisting of poly(butylene 2,5-furandicarboxylate) (PBF) and cellulose nanocrystals (CNC) were successfully prepared through a common solution and casting method. The influence of CNC on the crystallization behavior, mechanical property, and hydrophilicity of PBF was systematically investigated. Under different crystallization processes, the crystallization of PBF was obviously promoted by CNC as a biobased nucleating agent. The Ozawa equation was not suitable to fit the nonisothermal melt crystallization kinetics of PBF and PBF/CNC composites. The nucleation activity of CNC was quantitatively calculated by the Dobreva method; moreover, the nucleation efficiency of CNC was further evaluated through the self-nucleation procedure. The isothermal melt crystallization kinetics of PBF and PBF/CNC composites was well described by the Avrami method; moreover, the crystallization mechanism and the crystal structure of PBF remained unchanged despite the presence of CNC. CNC also greatly enhanced both the mechanical property and hydrophilicity of PBF in the composites. In sum, low loadings of CNC simultaneously improved the crystallization, mechanical property, and hydrophilicity of PBF, which should be of significant importance and interest in fully biobased polymer composites from a sustainable viewpoint.
Collapse
Affiliation(s)
| | | | - Zhaobin Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (S.P.); (H.Y.)
| |
Collapse
|
4
|
Chen Y, Yu Z, Zhu G, Xu H, Lin N. High-Throughput Molecular Dynamics Study and Turbidity Analysis on Clustering and Agglomeration of Cellulose Nanocrystals in Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1013-1023. [PMID: 39729037 DOI: 10.1021/acs.langmuir.4c04310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The dispersion of cellulose nanocrystals (CNCs) in suspensions determines the quality of the CNC-reinforced composites. Before being mixed into the composite matrix, stable suspensions must maintain a well-dispersed state, requiring proper design strategies to prevent agglomeration and precipitation. Considering the volume fraction, aspect ratio, and zeta potential, this paper proposes a coarse-grained model to simulate CNC clustering and an experimental program to observe accelerated precipitation of CNCs. High-throughput molecular dynamics simulations yield a diagram of clustering time plotted against aspect ratio, zeta potential, and volume fraction of CNCs. Turbidity analysis with centrifugation-accelerated tests shows that precipitation occurs only after clustering and agglomeration are completed and that centrifugation rarely accelerates clustering. Clustering of short chains instantly leads to agglomeration, whereas clustering of long chains features delayed agglomeration, which can be triggered by centrifugation. Zeta potential is found to be the most critical factor affecting clustering, agglomeration, and precipitation. The findings provide critical insights into the conditions that favor stable CNC suspensions, which are essential for preparing well-dispersed suspensions and improving the composite material performance.
Collapse
Affiliation(s)
- Yang Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zechuan Yu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ge Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Hui Xu
- School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
5
|
Yu S, Peng G, Jiao J, Liu P, Li H, Xi J, Wu D. Chitin nanocrystals-stabilized emulsion as template for fabricating injectable suspension containing polylactide hollow microspheres. Carbohydr Polym 2024; 337:122176. [PMID: 38710562 DOI: 10.1016/j.carbpol.2024.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
One of the promising applications of rod-like chitin nanocrystals (ChNCs) is the use as particle emulsifier to develop Pickering emulsions. We reported a ChNC-stabilized oil-in-water emulsion system, and developed a Pickering emulsion-templated method to prepare polylactide (PLA) hollow microspheres here. The results showed that both non-modified ChNCs and acetylated ChNCs could well emulsify the dichloromethane (DCM) solution of PLA-in-aqueous mannitol solution systems, forming very stable emulsions. At the same oil-to-water ratios and ChNC loadings, the emulsion stability was improved with increasing acetylation levels of ChNCs, accompanied by reduced size of droplets. Through the solvent evaporation, the PLA hollow microspheres were templated successfully, and the surface structure was also strongly dependent on the acetylation level of ChNCs. At a low level of acetylation, the single-hole or multi-hole surface structure formed, which was attributed to the out-diffusion of DCM caused by the solvent extraction and evaporation. These surface defects decreased with increased acetylation levels of ChNCs. Moreover, the aqueous suspension with as-obtained PLA microspheres revealed shear-thinning property and good biocompatibility, thereby had promising application as injectable fillers. This work can provide useful information around tuning surface structures of the Pickering emulsion-templated polymer hollow microspheres by regulating acetylation level of ChNCs.
Collapse
Affiliation(s)
- Sumin Yu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Jiali Jiao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Peng Liu
- Shanghai Isiris Medical Co. Ltd., Shanghai 201400, PR China
| | - Huajun Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Juqun Xi
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
6
|
Ma F, Gao Y, Xie W, Wu D. Effect of hydrophobic modification of chitin nanocrystals on role as anti-nucleator in the crystallization of poly(ε-caprolactone)/polylactide blend. Int J Biol Macromol 2024; 269:132097. [PMID: 38710249 DOI: 10.1016/j.ijbiomac.2024.132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Biodegradable polymer blends filled with rod-like polysaccharide nanocrystals have attracted much attention because each component in this type of ternary composites is biodegradable, and the final properties are more easily tailored comparing to those of binary composites. In this work, chitin nanocrystals (ChNCs) were used as nanofiller for the biodegradable poly(ε-caprolactone) (PCL)/polylactide (PLA) immiscible blend to prepare ternary composites for a crystallization study. The results revealed that the crystallization behavior of PCL/PLA blend matrices strongly depended on the surface properties of ChNCs. Non-modified ChNCs and modified ChNCs played completely different roles during crystallization of the ternary systems: the former was inert filler, while the latter acted as anti-nucleator to the PCL phase. This alteration was resulted from the improved ChNC-PCL affinity after modification of ChNCs, which was due to the 'interfacial dilution effect' and the preferential dispersion of ChNCs. This work presents a unique perspective on the nucleation role of ChNCs in the crystallization of immiscible PCL/PLA blends, and opens up a new application scenario for ChNCs as anti-nucleator.
Collapse
Affiliation(s)
- Fen Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuxin Gao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Institute for Innovative Materials & Energy, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
7
|
Alkassfarity AN, Yassin MA, Abdel Rehim MH, Liu L, Jiao Z, Wang B, Wei Z. Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging. Int J Biol Macromol 2024; 261:129871. [PMID: 38309396 DOI: 10.1016/j.ijbiomac.2024.129871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The packaging industry demands improved eco-friendly materials with new and enhanced properties. In this context, bio-nanocomposite films with antimicrobial and UV-shielding properties based on modified cellulose nanocrystals/polycaprolactone (MCNC/PCL) were fabricated via solution casting method, and then food packaging simulation was carried out. CNCs were obtained by acid hydrolysis followed by successful functionalization with Quaternary ammonium surfactant, confirmed by FTIR, XPS, XRD, TEM, and DLS analyses. Furthermore, the morphological, physical, antibacterial, and food packaging properties of all prepared films were investigated. Results showed that the mechanical, UV blocking, barrier properties, and antibacterial activity of all composite films were remarkably improved. Particularly, the addition of 3 wt% MCNC increased the tensile strength and elongation at break by 27.5 % and 20.0 %, respectively. Moreover, the permeability of O2, CO2, and water vapor dramatically reduced by 97.6 %, 96.7 %, and 49.8% compared to the Neat PCL. Further, the UV-blocking properties of the composite films were significantly improved. The antimicrobial properties of MCNC/PCL films showed good antimicrobial properties against S. aureus. Finally, cherry packaged with 1 and 3 wt% MCNC films exhibited satisfactory freshness after 22 days of preservation. Overall, the fabricated PCL nanocomposite films can be utilized in the food packaging industry.
Collapse
Affiliation(s)
- Asmaa N Alkassfarity
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Packing and Packaging Materials Department, National Research Centre, Giza, Egypt
| | - Mohamed A Yassin
- Packing and Packaging Materials Department, National Research Centre, Giza, Egypt; Advanced Materials and Nanotechnology Lab, Center of Excellence, National Research Centre, Giza, Egypt
| | - Mona H Abdel Rehim
- Packing and Packaging Materials Department, National Research Centre, Giza, Egypt
| | - Lipeng Liu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ziyue Jiao
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|