1
|
Liu S, Han F, Chen P, Zhang R, Tao Y. Injectable and drug-loaded gelatin methacrylate and carboxymethylated-sulfated xanthan gum hydrogels as biomimetic mineralization constructs. Carbohydr Polym 2025; 355:123354. [PMID: 40037732 DOI: 10.1016/j.carbpol.2025.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Injectable and drug-loaded hydrogels based on gelatin and xanthan gum derivatives were biomineralized to form organic-inorganic hybrid composites with osteoconductivity and controllable release of antibiotic drug for inducing bone generation. Gelatin was amidated to get gelatin methacrylate (GM) for supporting cell adhesion and photo-crosslinkability. Xanthan gum was chemically modified to obtain carboxymethalated and sulfated derivatives (CMXG and SXG) with high negative charges for mimicking chondroitin sulfate in bone. GM was co-dissolved with CMXG/SXG and ciprofloxacin hydrochloride (CPFXH), and photo-crosslinked with lithium phenyl-2,4,6-tri methylbenzoylphosphinate (LAP) to fabricate drug-loaded CMXG/SXG-GM-CPFXH-LAP hydrogels, which possessed swelling ratio of 1.30 ± 0.03 and controlled release of CPFXH in PBS for 24 h. The 7d-mineralized CMXG/SXG3-GM12-CPFXH-LAP hydrogel showed dense mineral layers with Ca/P atomic ratio of 1.79, degree of crystalline of 77.3 %, mineral content of 50.8 %, and 2.6 times higher shear modulus than original one. The CMXG/SXG3-GM12-CPFXH-LAP solution was acted as "inks" to "write" word (BONE) and Chinese character ("Gu") manually, and was transferred into moulds to obtain hydrogel constructs with good fidelity of patterns, suggesting injectability and printability. The injectable, mineralizable, biocompatible and drug-loaded CMXG/SXG-GM-CPFXH-LAP hydrogels possess promising applications in bone tissue engineering due to facilitating osteoconductivity, recruiting cells, and reducing inflammation.
Collapse
Affiliation(s)
- Shiyao Liu
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Fan Han
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Ruquan Zhang
- School of Mathematical and Physical Sciences, Wuhan Textile University, 430200 Wuhan, China.
| | - Yongzhen Tao
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
2
|
Mohanty S, Roy S. Fabricating N-Cadherin Mimetic Peptide-Based Diverse Self-Assembled Hydrogels in the Presence of Biologically Relevant Cations. Biomacromolecules 2025; 26:2238-2255. [PMID: 40099398 DOI: 10.1021/acs.biomac.4c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
N-cadherin, a crucial extracellular matrix protein, is crucial in mediating cellular interactions and promoting cell migration. Herein, we have attempted to create N-cadherin mimetic peptide (NcMP) hydrogel scaffolds by incorporating cations as the external stimulus to create a suitable interface for favorable cellular interactions. Inspired by the Hofmeister series, we selected four biologically significant cations, classified as kosmotropes and chaotropes, and varied their concentrations to investigate how increasing ionic strength affects the self-assembly of the NcMP. Interestingly, the incorporation of these ions greatly influenced the self-assembling propensity of the Fmoc-HAVDI hydrogel, which resulted in diverse structural and mechanical properties. Such diverse physical properties led to differential cellular responses. Thus, we were able to access diverse physical and biological properties in a single gelator molecule by simply changing the nature and concentration of the biologically relevant cations. We anticipate that these diverse hydrogel systems hold great potential in various biomedical applications.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Abedi N, Sadeghian A, Kouhi M, Haugen HJ, Savabi O, Nejatidanesh F. Immunomodulation in Bone Tissue Engineering: Recent Advancements in Scaffold Design and Biological Modifications for Enhanced Regeneration. ACS Biomater Sci Eng 2025; 11:1269-1290. [PMID: 39970366 DOI: 10.1021/acsbiomaterials.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bone defects, whether caused by trauma, cancer, infectious diseases, or surgery, can significantly impair people's quality of life. Although autografts are the gold standard for treating bone defects, they often fall short in adequately forming bone tissue. The field of bone tissue engineering has made strides in using scaffolds with various biomaterials, stem cells, and growth factors to enhance bone healing. However, some biological structures do not yield satisfactory therapeutic outcomes for new bone formation. Recent studies have shed light on the crucial role of immunomodulation, specifically the interaction between the implanted scaffold and host immune systems, in bone regeneration. Immune cells, particularly macrophages, are pivotal in the inflammatory response, angiogenesis, and osteogenesis. This review delves into the immune system's mechanism toward foreign bodies and the recent advancements in scaffolds' physical and biological properties that foster bone regeneration by modulating macrophage polarization to an anti-inflammatory phenotype and enhancing the osteoimmune microenvironment.
Collapse
Affiliation(s)
- Niloufar Abedi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Aida Sadeghian
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Omid Savabi
- Department of Prosthodontics, Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Farahnaz Nejatidanesh
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
4
|
Mohanty S, Sen S, Sharma P, Roy S. Designing Pathway-Controlled Multicomponent Ultrashort Peptide Hydrogels with Diverse Functionalities at the Nanoscale for Directing Cellular Behavior. Biomacromolecules 2024; 25:3271-3287. [PMID: 38712837 DOI: 10.1021/acs.biomac.3c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tuning self-assembling pathways by implementing different external stimuli has been extensively studied, owing to their effective control over structural and mechanical properties. Consequently, multicomponent peptide hydrogels with high structural tunability and stimuli responsiveness are crucial in dictating cellular behavior. Herein, we have implemented both coassembly approach and pathway-dependent self-assembly to design nonequilibrium nanostructures to understand the thermodynamic and kinetic aspects of peptide self-assembly toward controlling cellular response. Our system involved an ultrashort peptide gelator and a hydrophilic surfactant which coassembled through different pathways, i.e., heat-cool and sonication methods with variable energy input. Interestingly, it was possible to access diverse structural and mechanical properties at the nanoscale in a single coassembled system. Further, the hydrophilic surfactant provided additional surface functionalities, thus creating an efficient hydrophilic matrix for cellular interaction. Such diverse functionalities in a single coassembled system could lead to the development of advanced scaffolds, with applications in various biomedical fields.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India
| |
Collapse
|
5
|
Halder M, Singh A, Negi D, Singh Y. Investigating the Role of Amino Acids in Short Peptides for Hydroxyapatite Binding and Osteogenic Differentiation of Mesenchymal Stem Cells to Aid Bone Regeneration. Biomacromolecules 2024; 25:2286-2301. [PMID: 38502906 DOI: 10.1021/acs.biomac.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ananya Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
6
|
Sen S, Sharma P, Pal VK, Roy S. Designing Cardin-Motif Peptide and Heparin-Based Multicomponent Advanced Bioactive Hydrogel Scaffolds to Control Cellular Behavior. Biomacromolecules 2023; 24:4923-4938. [PMID: 37909341 DOI: 10.1021/acs.biomac.3c00621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Recently, peptide and sugar-based multicomponent systems have gained much interest in attaining the sophisticated structure and biofunctional complexity of the extracellular matrix (ECM). To this direction, we have designed for the first time a biologically relevant minimalist Cardin-motif peptide capable of binding ECM-derived glycosaminoglycans. Herein, we explored Cardin-motif peptide and heparin-based biomolecular matrix by employing simple noncovalent interactions at the molecular level. Interestingly, this peptide was inadequate to induce hydrogelation at ambient pH due to the presence of basic amino acids. However, addition of heparin successfully triggered its gelation at physiological pH following favorable electrostatic interactions with heparin. Importantly, the newly developed scaffolds displayed tunable nanofibrous morphology and superior mechanical properties as controlled simply by the differential mixing ratio of both biomolecular entities. Additionally, these composite scaffolds could closely mimic the complexity of ECM as they demonstrated superior biocompatibility and enhanced growth and proliferation of neural cells as compared to the peptide scaffold.
Collapse
Affiliation(s)
- Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| | - Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| |
Collapse
|
7
|
Yang R, Wang R, Abbaspoor S, Rajan M, Turki Jalil A, Mahmood Saleh M, Wang W. In vitro and in vivo evaluation of hydrogel-based scaffold for bone tissue engineering application. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|