1
|
Boas D, Taha M, Tshuva EY, Reches M. Tailoring Peptide Coacervates for Advanced Biotechnological Applications: Enhancing Control, Encapsulation, and Antioxidant Properties. ACS APPLIED MATERIALS & INTERFACES 2025; 17:31561-31574. [PMID: 40296204 PMCID: PMC12123622 DOI: 10.1021/acsami.5c02367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
The increasing interest in protein and peptide coacervates is accompanied by the development of various applications, from drug delivery to biosensor preparation. However, the impact of peptide end groups and charges on coacervation remains unclear. For this purpose, we designed four peptide derivatives with varying end groups and net charges. These inherently fluorescent peptides readily formed coacervates in solution or during evaporation. The ability to control the coacervation process, the coacervate's appearance, and the encapsulation capabilities were thoroughly investigated. The coacervates displayed significant antioxidant properties, protecting the encapsulated material. Additionally, control of the deposition of coacervates on surfaces was achieved. These abilities highlight the potential of these coacervates in biotechnological applications, including biosensor development and the delivery of compounds such as drugs and dietary supplements. Exploiting the dynamic characteristics of coacervates with the unique properties of these peptides underscores their practical advantages.
Collapse
Affiliation(s)
- Daniel Boas
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Mohammad Taha
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Edit Y. Tshuva
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Meital Reches
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| |
Collapse
|
2
|
Thorn CR, Bhattacharya D, Crawford L, Lin V, Badkar A, Kolhe P. Assessing the impact of viscosity lowering excipient on liquid-liquid phase separation for high concentration monoclonal antibody solutions. J Pharm Sci 2025; 114:103804. [PMID: 40320242 DOI: 10.1016/j.xphs.2025.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/17/2025]
Abstract
With continued interest in high concentration monoclonal antibody drug products to meet subcutaneous administration requirements, there is heightened attention on balancing protein-protein interactions, solution properties and overcoming instabilities such as increased in viscosity, particle formation, loss in potency, and aggregation of drug products. L-arginine hydrochloride is a commonly used viscosity reducing excipient used to influence protein-protein interactions of high concentration of mAbs. Contrary to literature, we observed that slight modifications to L-arginine hydrochloride concentrations in model drug product formulations can result in liquid-liquid phase separation if excipient and pH conditions are not well tightly controlled. We utilized a biophysical toolkit to assess the potentials of liquid-liquid phase separation (LLPS) that informs the limits of excipient and pH levels using structural- and molecular interaction-based assessments. While liquid-liquid phase separation observed in this study is reversible and does not impact inherent protein folding and structure, we demonstrated that increased ionic content in the formulations can significantly alter the balance of osmolarity toward the occurrence of LLPS. The aim of this work is to demonstrate the diversity of the toolbox used to evaluate the observed LLPS and the decision-making for optimization of formulation development.
Collapse
Affiliation(s)
- Chelsea R Thorn
- BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Pfizer, Andover, MA, USA
| | - Deep Bhattacharya
- BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Pfizer, Andover, MA, USA.
| | - Lindsey Crawford
- BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Pfizer, Andover, MA, USA
| | - Vicky Lin
- BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Pfizer, Andover, MA, USA
| | - Advait Badkar
- BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Pfizer, Andover, MA, USA
| | - Parag Kolhe
- BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Pfizer, Andover, MA, USA
| |
Collapse
|
3
|
Apuzzo E, Cathcarth M, Picco AS, von Bilderling C, Azzaroni O, Agazzi ML, Herrera SE. Insights into the Mechanism of Protein Loading by Chain-Length Asymmetric Complex Coacervates. Biomacromolecules 2025; 26:1171-1183. [PMID: 39807630 DOI: 10.1021/acs.biomac.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The study of the phase behavior of polyelectrolyte complex coacervates has attracted significant attention in recent years due to their potential use as membrane-less organelles, microreactors, and drug delivery platforms. In this work, we investigate the mechanism of protein loading in chain-length asymmetric complex coacervates composed of a polyelectrolyte and an oppositely charged multivalent ion. Unlike the symmetric case (polycation + polyanion), we show that protein loading is highly selective based on the protein's net charge: only proteins with charges opposite to the polyelectrolyte can be loaded. Through a series of systematic experiments, we identified that the protein loading process relies on the formation of a neutral three-component coacervate in which both the protein and the multivalent ion serve as complexing agents for the polyelectrolyte. Lastly, we demonstrated that this mechanism extends to the sequestration of other charged small molecules, offering valuable insights into designing functional multicomponent coacervates.
Collapse
Affiliation(s)
- Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Catalina von Bilderling
- Departamento de Tecnología y Administración, CONICET, Universidad Nacional de Avellaneda, Avellaneda, Mario Bravo 1460, Avellaneda (Buenos Aires) B1868, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET, Universidad Nacional de La Plata, Diagonal 113 y 64, La Plata (Buenos Aires) 1900, Argentina
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud, CONICET, Universidad Nacional de Río Cuarto, Ruta Nacional 36 KM 601, Río Cuarto (Córdoba) 5800, Argentina
| | - Santiago E Herrera
- Instituto de Química de los Materiales, Ambiente y Energía, CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160, CABA (Buenos Aires) 1428, Argentina
| |
Collapse
|
4
|
Xie S, Yue C, Ye S, Li Z. Biological Condensate Growth: Examining the Impact of Solute Crowder on Size Expansion. Biomacromolecules 2025; 26:323-331. [PMID: 39655866 DOI: 10.1021/acs.biomac.4c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Biological condensation refers to the formation of micrometer-sized or smaller condensates by biological macromolecules, a process often influenced by the crowded cellular environment. Poly(ethylene glycol) (PEG) is commonly used to mimic cellular crowding, and its ability to reduce the critical nucleation concentration has been well established. However, its impact on condensate size has been less explored. This study investigates how PEG affects the size of condensates formed between protein TNP1 and DNA. Our experimental findings show that PEG molecules increase condensate size. Notably, at equal mass concentrations of PEG400, PEG3350, and PEG10000, longer PEG molecules have a much greater effect on condensate expansion. Computational simulations further reveal that longer PEG molecules enhance protein-DNA condensation more effectively and contribute to shaping the condensates into regular forms. Overall, our study provides key insights into how crowding factors influence the size and shape of colloidal growth.
Collapse
Affiliation(s)
- Shangqiang Xie
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Congran Yue
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sheng Ye
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhenlu Li
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
5
|
Silonov SA, Kuklin AI, Nesterov SV, Kuznetsova IM, Turoverov KK, Fonin AV. Pitfalls of Using ANS Dye Under Molecular Crowding Conditions. Int J Mol Sci 2024; 25:13600. [PMID: 39769361 PMCID: PMC11676346 DOI: 10.3390/ijms252413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS. Furthermore, GdnHCl can disrupt these clusters and directly affect the ANS spectral characteristics. A model for the interaction between GdnHCl, crowders, and ANS is proposed. Using bovine serum albumin (BSA) as a model protein, the limitations of using ANS for studying conformational transitions induced by GdnHCl in the presence of crowding agents are demonstrated.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (S.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research, 141980 Dubna, Russia;
| | - Semen V. Nesterov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (S.V.N.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (S.V.N.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (S.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (S.V.N.); (I.M.K.); (K.K.T.)
| |
Collapse
|
6
|
Mirlohi K, Blocher McTigue WC. Coacervation for biomedical applications: innovations involving nucleic acids. SOFT MATTER 2024; 21:8-26. [PMID: 39641131 DOI: 10.1039/d4sm01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gene therapies, drug delivery systems, vaccines, and many other therapeutics, although seeing breakthroughs over the past few decades, still suffer from poor stability, biocompatibility, and targeting. Coacervation, a liquid-liquid phase separation phenomenon, is a pivotal technique increasingly employed to enhance the effectiveness of therapeutics. Through coacervation strategies, many current challenges in therapeutic formulations can be addressed due to the tunable nature of this technique. However, much remains to be explored to enhance these strategies further and scale them from the benchtop to industrial applications. In this review, we highlight the underlying mechanisms of coacervation, elucidating how factors such as pH, ionic strength, temperature, chirality, and charge patterning influence the formation of coacervates and the encapsulation of active ingredients. We then present a perspective on current strategies harnessing these systems, specifically for nucleic acid-based therapeutics. These include peptide-, protein-, and polymer-based approaches, nanocarriers, and hybrid methods, each offering unique advantages and challenges. Nucleic acid-based therapeutics are crucial for designing rapid responses to diseases, particularly in pandemics. While these exciting systems offer many advantages, they also present limitations and challenges which are explored in this work. Exploring coacervation in the biomedical frontier opens new avenues for innovative nucleic acid-based treatments, marking a significant stride towards advanced therapeutic solutions.
Collapse
Affiliation(s)
- Kimiasadat Mirlohi
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
7
|
Tersteegen J, Tunn I, Sand M, Välisalmi T, Malkamäki M, Gandier JA, Beaune G, Sanz-Velasco A, Anaya-Plaza E, Linder MB. Recombinant silk protein condensates show widely different properties depending on the sample background. J Mater Chem B 2024; 12:11953-11967. [PMID: 39449635 DOI: 10.1039/d4tb01422g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
There is an increasing understanding that condensation is a crucial intermediate step in the assembly of biological materials and for a multitude of cellular processes. To apply and to understand these mechanisms, in vitro biophysical characterisation techniques are central. The formation and biophysical properties of protein condensates depend on a multitude of factors, such as protein concentration, pH, temperature, salt concentration, and presence of other biomolecules as well as protein purification and storage conditions. Here we show how critical the procedures for preparing protein samples for in vitro studies are. We compare two purification methods of the recombinant spider silk protein CBM-AQ12-CBM and study the effect of background molecules, such as DNA, on the formation and properties of the condensates. We characterize the condensates using aggregation induced emitters (AIEs), coalescence studies, and micropipette aspiration. The condensated sample containing background molecules exhibit a lower threshold concentration for condensate formation accompanied by a lower surface tension and longer coalescence time when compared to the pure protein condensates. Furthermore, the partitioning of small AIEs is enhanced in the presence of background molecules. Our results highlight that the purification method and remaining background molecules strongly affect the biophysical properties of spider silk condensates. Using the acquired knowledge about spider silk protein purification we derive guidelines for reproducible condensate formation that will foster the use of spider silk proteins as adhesives or carriers for biomedical applications.
Collapse
Affiliation(s)
- Jennifer Tersteegen
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Isabell Tunn
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Ma Sand
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Teemu Välisalmi
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Maaria Malkamäki
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Julie-Anne Gandier
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
- Häme University of Applied Sciences HAMK, Hämeenlinna, HAMK FI-13101, Finland
| | - Grégory Beaune
- Department of Applied Physics, Aalto University School of Science, Espoo, Aalto FI-00076, Finland
| | - Alba Sanz-Velasco
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| | - Markus B Linder
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Aalto FI-00076, Finland.
| |
Collapse
|
8
|
Petrović P, Balanč B, Mijalković J, Đukić T, Bošković S, Đorđević V, Bugarski B, Nedović V, Knežević-Jugović Z. Complexation with Alginate in Pumpkin Leaf Protein Solutions for the Encapsulation of Folic Acid: The Effect of Extraction Protocols. Foods 2024; 13:3695. [PMID: 39594109 PMCID: PMC11593432 DOI: 10.3390/foods13223695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to assess pumpkin leaves as a protein source and determine the feasibility of these proteins to form complexes with alginate for the encapsulation of folic acid. Different isolation protocols, two based on isoelectric precipitation (one with thermal pretreatment and the other with alkali pre-extraction) and one based on stepwise precipitation with ammonium sulfate, were compared regarding the yield and structural properties of the obtained leaf protein concentrates (LPC). The highest purity of protein was achieved using the thermal-acid protocol and the salting-out protocol at 40% saturation. RuBisCO protein was detected by SDS-PAGE in all LPCs, except for the fractions obtained through salting-out at saturation level ≥ 60%. Complexation of the LPC solutions (1 mg/mL) and sodium alginate solution (10 mg/mL) was monitored as a function of LPC:alginate ratio (2:1, 5:1, and 10:1) and pH (2-8) by zeta-potential measurements and confirmed by FT-IR analysis. Based on the results, the strongest interaction between LPCs and alginate occurred at a pH between 2.20 and 2.80 and an LPC:alginate ratio of 10:1. Complexation resulted in particle yields of 42-71% and folic acid entrapment of 46-92%. The LPC-folic acid interactions elucidated by computational protein-ligand docking demonstrated the high potential of RuBisCO as a biocarrier material for folic acid. The in vitro release study in the simulated gastrointestinal fluids indicated that complexes would be stable in gastric conditions, while folic acid would be gradually released in the intestinal fluids.
Collapse
Affiliation(s)
- Predrag Petrović
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia (T.Đ.); (S.B.)
| | - Bojana Balanč
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia (T.Đ.); (S.B.)
| | - Jelena Mijalković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.)
| | - Tamara Đukić
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia (T.Đ.); (S.B.)
| | - Stefan Bošković
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia (T.Đ.); (S.B.)
| | - Verica Đorđević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.)
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia
| | - Zorica Knežević-Jugović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.)
| |
Collapse
|
9
|
Castelletto V, Seitsonen J, Pollitt A, Hamley IW. Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP. Biomacromolecules 2024; 25:5321-5331. [PMID: 39066731 PMCID: PMC11323023 DOI: 10.1021/acs.biomac.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences W2R2 and W3R3 was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements. SAXS was used to elucidate the structure within the coacervate droplets, and circular dichroism spectroscopy was used to probe the conformation of the peptides, a characteristic signature for cation-π interactions being present under conditions of coacervation. These observations were rationalized using a simple model for the Rayleigh stability of charged coacervate droplets, along with atomistic molecular dynamics simulations which provide insight into stabilizing π-π stacking interactions of tryptophan as well as arginine-tryptophan cation-π interactions (which modulate the charge of the tryptophan π-electron system). Remarkably, the dipeptide WR did not show simple coacervation under the conditions examined, but complex coacervation was observed in mixtures with ATP (adenosine triphosphate). The electrostatically stabilized coacervation in this case provides a minimal model for peptide/nucleotide membraneless organelle formation. These are among the simplest model peptide systems observed to date able to undergo either simple or complex coacervation and are of future interest as protocell systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo 02150, Finland
| | - Alice Pollitt
- Institute
for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
10
|
Poprawa SM, Stasi M, Kriebisch BAK, Wenisch M, Sastre J, Boekhoven J. Active droplets through enzyme-free, dynamic phosphorylation. Nat Commun 2024; 15:4204. [PMID: 38760374 PMCID: PMC11101487 DOI: 10.1038/s41467-024-48571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Life continuously transduces energy to perform critical functions using energy stored in reactive molecules like ATP or NADH. ATP dynamically phosphorylates active sites on proteins and thereby regulates their function. Inspired by such machinery, regulating supramolecular functions using energy stored in reactive molecules has gained traction. Enzyme-free, synthetic systems that use dynamic phosphorylation to regulate supramolecular processes have not yet been reported, to our knowledge. Here, we show an enzyme-free reaction cycle that consumes the phosphorylating agent monoamidophosphate by transiently phosphorylating histidine and histidine-containing peptides. The phosphorylated species are labile and deactivate through hydrolysis. The cycle exhibits versatility and tunability, allowing for the dynamic phosphorylation of multiple precursors with a tunable half-life. Notably, we show the resulting phosphorylated products can regulate the peptide's phase separation, leading to active droplets that require the continuous conversion of fuel to sustain. The reaction cycle will be valuable as a model for biological phosphorylation but can also offer insights into protocell formation.
Collapse
Affiliation(s)
- Simone M Poprawa
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Brigitte A K Kriebisch
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Monika Wenisch
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Judit Sastre
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
11
|
Lamy H, Bullier-Marchandin E, Pointel C, Echalard A, Ladam GD, Lutzweiler G. Kinetic Study of the Esterase-like Activity of Albumin following Condensation by Macromolecular Crowding. Biomacromolecules 2024; 25:2803-2813. [PMID: 38629692 DOI: 10.1021/acs.biomac.3c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The ability of bovine serum albumin (BSA) to form condensates in crowded environments has been discovered only recently. Effects of this condensed state on the secondary structure of the protein have already been unraveled as some aging aspects, but the pseudo-enzymatic behavior of condensed BSA has never been reported yet. This article investigates the kinetic profile of para-nitrophenol acetate hydrolysis by BSA in its condensed state with poly(ethylene) glycol (PEG) as the crowding agent. Furthermore, the initial BSA concentration was varied between 0.25 and 1 mM which allowed us to modify the size distribution, the volume fraction, and the partition coefficient (varying from 136 to 180). Hence, the amount of BSA originally added was a simple way to modulate the size and density of the condensates. Compared with dilute BSA, the initial velocity (vi) with condensates was dramatically reduced. From the Michaelis-Menten fits, the extracted Michaelis constant Km and the maximum velocity Vmax decreased in control samples without condensates when the BSA concentration increased, which was attributed to BSA self-oligomerization. In samples containing condensates, the observed vi was interpreted as an effect of diluted BSA remaining in the supernatants and from the condensates. In supernatants, the crowding effect of PEG increased the kcat and catalytic efficiency. Last, Vmax was proportional to the volume fraction of the condensates, which could be controlled by varying its initial concentration. Hence, the major significance of this article is the control of the size and volume fraction of albumin condensates, along with their kinetic profile using liquid-liquid phase separation.
Collapse
Affiliation(s)
- Honorine Lamy
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | | | - Cléo Pointel
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Aline Echalard
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Guy Daniel Ladam
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| | - Gaëtan Lutzweiler
- University of Rouen Normandy, INSA Rouen Normandie, CNRS, PBS UMR 6270, F-76000 Rouen, France
| |
Collapse
|