1
|
Li H, Yu L, Li Z, Li S, Liu Y, Qu G, Chen K, Huang L, Li Z, Ren J, Wu X, Huang J. A Narrative Review of Bioactive Hydrogel Microspheres: Ingredients, Modifications, Fabrications, Biological Functions, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500426. [PMID: 40103506 DOI: 10.1002/smll.202500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Hydrogel microspheres are important in regenerative medicine and tissue engineering, acting as cargos of cells, drugs, growth factors, bio-inks for 3D printing, and medical devices. The antimicrobial and anti-inflammatory characteristics of hydrogel microspheres are good for treating injured tissues. However, the biological properties of hydrogel microspheres should be modified for optimal treatment of various body parts with different physiological and biochemical environments. In addition, specific preparation methods are required to produce customized hydrogel microspheres with different shapes and sizes for various clinical applications. Herein, the advances in hydrogel microspheres for biomedical applications are reviewed. Synthesis methods for hydrogel precursor solutions, manufacturing methods, and strategies for enhancing the biological functions of these hydrogel microspheres are described. The involvement of bioactive hydrogel microspheres in tissue repair is also discussed. This review anticipates fostering more insights into the design, production, and application of hydrogel microspheres in biomedicine.
Collapse
Affiliation(s)
- Haohui Li
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Sicheng Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Luqiao Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Medicine, Nanjing University, Nanjing, 210093, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
2
|
Kim M, Park Y, Lee HJ. Enhanced Mechanical Stability of Water-Based Peel-Off Nail Polish Through Riboflavin Phosphate-Mediated Visible Light Photocrosslinking. Polymers (Basel) 2025; 17:766. [PMID: 40292621 PMCID: PMC11946657 DOI: 10.3390/polym17060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Water-based peel-off nail polishes offer environmental and safety advantages but often suffer from poor mechanical properties. This study investigated the effect of visible-light-induced photocrosslinking with riboflavin phosphate (RFP) on the mechanical properties and adhesion of water-based peel-off nail polish films. Polyurethane films that contained various concentrations of RFP (0-0.1%) were prepared by combining two commercial water-based polyurethane dispersions and characterized through tensile testing, rheological analysis, and adhesion measurements. Under large deformation, the photocrosslinked films showed significantly enhanced mechanical properties, with the highest RFP concentration (0.1%) exhibiting a 54% increase in tensile strength and a 94% increase in Young's modulus compared with the control, which reflected a transition from physical to covalent network dominance. Rheological analysis under small deformation revealed the formation of complex network structures, where lower RFP concentrations maintained a higher chain mobility beneficial for adhesion, while higher concentrations created more stable networks with enhanced thermal stability, which maintained 50% of the initial storage modulus up to 100 °C. The films exhibited biocompatibility across all RFP concentrations in the cell viability tests, and the straightforward preparation process that used commercially available materials suggests immediate potential for industrial implementation. These results demonstrate that RFP-mediated visible light photocrosslinking offers a promising approach for developing high-performance, environmentally friendly nail polish formulations that combine enhanced durability with user safety and manufacturing practicality.
Collapse
Affiliation(s)
- Minjin Kim
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| | - Youngran Park
- Pluchke Co., Ltd., 20 Dongtancheomdansaneop 1-ro, Hwaseong-si 18469, Republic of Korea;
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
3
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
4
|
Kang NW, Seo YA, Jackson KJ, Jang K, Song E, Han U, Chen F, Heilshorn SC, Myung D. Photoactivated growth factor release from bio-orthogonally crosslinked hydrogels for the regeneration of corneal defects. Bioact Mater 2024; 40:417-429. [PMID: 39022184 PMCID: PMC11252716 DOI: 10.1016/j.bioactmat.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
In situ-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factors from such constructs have the potential to improve re-epithelialization and stromal remodeling. However, challenges persist in controlling the release of therapeutic molecules from hydrogels. Here, an in situ-forming bio-orthogonally crosslinked hydrogel containing growth factors tethered via photocleavable linkages (PC-HACol hydrogel) was developed to accelerate corneal regeneration. Epidermal growth factor (EGF) was conjugated to the hydrogel backbone through photo-cleavable (PC) spacer arms and was released when exposed to mild intensity ultraviolet (UV) light (2-5 mW/cm2, 365 nm). The PC-HACol hydrogel rapidly gelled within a few minutes when applied to corneal defects, with excellent transparency and biocompatibility. After subsequent exposure to UV irradiation, the hydrogel promoted the proliferation and migration of corneal epithelial cells in vitro. The rate of re-epithelialization was positively correlated to the frequency of irradiation, verified through ex vivo rabbit cornea organ culture studies. In an in vivo rat corneal wound healing study, the PC-HACol hydrogel exposed to UV light significantly promoted re-epithelialization, the remodeling of stromal layers, and exhibited significant anti-scarring effects, with minimal α-SMA and robust ALDH3A1 expression. Normal differentiation of the regenerated epithelia after healing was evaluated by expression of the corneal epithelial biomarker, CK12. The remodeled cornea exhibited full recovery of corneal thickness and layer number without hyperplasia of the epithelium.
Collapse
Affiliation(s)
- Nae-Won Kang
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Kevin J. Jackson
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Kyeongwoo Jang
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Euisun Song
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Uiyoung Han
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Fang Chen
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute at Stanford University, School of Medicine, Palo Alto, CA 94304, United States
- Department of Chemical Engineering, Stanford University, Palo Alto, CA 94305, United States
- VA Palo Alto HealthCare System, Palo Alto, CA 94304, United States
| |
Collapse
|
5
|
Sang F, Liu C, Yan J, Su J, Niu S, Wang S, Zhao Y, Dang Q. Polysaccharide- and protein-based hydrogel dressings that enhance wound healing: A review. Int J Biol Macromol 2024; 280:135482. [PMID: 39278437 DOI: 10.1016/j.ijbiomac.2024.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing. Furthermore, this review explores the potential of these hydrogels as vehicles for combination therapy, by incorporating growth factors or stem cells. Finally, the article offers insights into future directions of such hydrogels in wound repair field.
Collapse
Affiliation(s)
- Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Yoo S, Lee HJ. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2024; 214:128-147. [PMID: 39265553 PMCID: PMC11965833 DOI: 10.1159/000541416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations. BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations.
Collapse
Affiliation(s)
- Seungyeop Yoo
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
7
|
Wang Z, Liu J, Zheng Y, Zhang B, Hu Y, Wu Y, Li Y, Liu L, Zhu H, Liu Q, Yang B. Copper Ion-Inspired Dual Controllable Drug Release Hydrogels for Wound Management: Driven by Hydrogen Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401152. [PMID: 38593320 DOI: 10.1002/smll.202401152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bacterial infections and inflammation progression yield huge trouble for the management of serious skin wounds and burns. However, some hydrogel dressing exhibit poor wound-healing capabilities. Additionally, little information is given on the molecular theory of hydrogel gelation mechanisms and drug release performance from drug-polymer network in the water environment. Herein, cationic guar gum (CG) is first mixed with dipotassium glycyrrhizinate (DG), and then crosslinked Cu2+ to strengthen the mechanical strength followed by encapsulating mussel adhesive protein (MAP) as composite dressings. Intriguingly, CG-Cu2+ 0.5-DG10 possessed proper rheological properties and mechanical strength predominantly driven by strong CG-H2O-Cu2+ and Cu2+-CG hydrogen bonding interaction. Weak DG-CG hydrogen bonding only controlled DG release in the initial 4 h, while strong hydrogen bonding is the main force regulating the sustained release of Cu2+ within 48 h. The incorporation of MAP further loosened the tight crosslinking of CG-Cu2+ 0.5-DG10. The screened CG-Cu2+ 0.5-DG10/MAP possessed excellent self-healing, injectability, antibacterial, anti-inflammatory, cell proliferation-promotion activities with high biocompatibility. Therefore, CG-Cu2+ 0.5-DG10/MAP hydrogel expedited wound closure on S. aureus-infected full-thickness skin wound model and lowered necrosis progression to the unburned interspaces on a rat burn model. The results highlight the promising translational potential of Cu2+-inspired hydrogels for the management of burns and infected wounds.
Collapse
Affiliation(s)
- Zhuxian Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yixin Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bohai Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yamei Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
8
|
Luo W, Li Z, Che J, Li X, Zhang H, Tian J, Wang C, Li G, Jin L. Near-Infrared Responsive Nanocomposite Hydrogel Dressing with Anti-Inflammation and Pro-Angiogenesis for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34720-34731. [PMID: 38934381 DOI: 10.1021/acsami.4c06193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Zhenzhen Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Junjie Che
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Xinyao Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Jinxiu Tian
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Chunyang Wang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - GuiYing Li
- The Key Laboratory of Basic Research on Blood Purification Application in Hebei Province, Affiliated Hospital of Hebei Engineering University, Handan 056002, P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| |
Collapse
|
9
|
Na KS, Kim D, Kim H, Koh WG, Lee HJ. The combined effect of epidermal growth factor and keratinocyte growth factor delivered by hyaluronic acid hydrogel on corneal wound healing. Int J Biol Macromol 2024; 270:132365. [PMID: 38750850 DOI: 10.1016/j.ijbiomac.2024.132365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
This study strategically incorporates epidermal growth factor (EGF) and keratinocyte growth factor (KGF) within a hyaluronic acid (HA) hydrogel to enhance corneal wound healing. The controlled release of EGF and KGF from the HA hydrogel is engineered to promote the regeneration of both the epithelial and stromal layers. Specifically, EGF plays a pivotal role in the regeneration of the epithelial layer, while KGF exhibits efficacy in the regeneration of the stromal layer. The combination of these growth factors facilitates efficient regeneration of each layer and demonstrates the capability to modulate each other's regenerative effects. The interplay between EGF and KGF provides an understanding of their cooperative influence on the dynamics of corneal wound healing. The results of this study contribute to the development of advanced strategies for corneal wound management and offer insights into the complex process of corneal regeneration.
Collapse
Affiliation(s)
- Kyung-Sun Na
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Dohyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyewon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
10
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|