1
|
Liu B, Han Y, Zhang Z, Hao J, Wan H, Jin Y, Xu Q. Preparation and Characterization of Dual-Network Multifunctional Hydrogels Based on Peach Gum Polysaccharides: Ultrafast Self-Healing Ability, Favorable Mechanical Tunability, and Controlled Release Properties. Gels 2025; 11:274. [PMID: 40277710 DOI: 10.3390/gels11040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Natural hydrogels have attracted considerable attention due to advantages of moisturizing, biocompatibility, and plasticity. In this study, a dual-network oxidized peach gum polysaccharide-carboxymethyl chitosan (OPGC) hydrogels with ultrafast self-healing ability was constructed by self-assembly using oxidized peach gum polysaccharide (OPGP) and carboxymethyl chitosan (CMCS). After complete fracture, OPGC hydrogels rapidly self-healed within 30 s due to the dual-network structure formed by the hydrogen bonds between the OPGP molecules and the Schiff base bonds between them and the CMCS. Meanwhile, the hydrogels exhibited good injectability and biocompatibility. With the increase of CMCS from 0.5 wt% to 2.5 wt%, the gel formation time of OPGC hydrogels was drastically shortened from 12 min to 3 min, while the strength and water-holding capacity were enhanced. Furthermore, experimental in vitro and in vivo animal studies demonstrated excellent drug loading capacity of OPGC hydrogels, and the release rate of bactericide could be controlled by adjusting the content of CMCS. The OPGC hydrogels have outstanding properties for potential applications in the health and medical fields.
Collapse
Affiliation(s)
- Boyu Liu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Yumeng Han
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Zhenqing Zhang
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Jianing Hao
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Hao Wan
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao 266800, China
| |
Collapse
|
2
|
Huang K, Zhang C, Hu Y, Lacroix M, Wang Y. Holocellulose nanofibrils as effective nisin immobilization substrates for antimicrobial food packaging. Int J Biol Macromol 2025; 304:140741. [PMID: 39922342 DOI: 10.1016/j.ijbiomac.2025.140741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Holocellulose nanofibrils (HCNF), a type of nanocellulose with abundant amorphous regions suitable for chemical modification, show promise for sustainable food packaging but remain underutilized. This study employed HCNF to immobilize nisin and then spray-coated on the surface of soy protein isolate (SPI) films to improve mechanical, barrier, and antimicrobial properties. HCNF was extracted from wood sheet through chemical delignification and low-energy defibrillation, and then oxidized to introduce aldehyde groups for efficient nisin conjugation. The abundant amorphous regions led to a high immobilization rate of 3.4 mg/g, and conjugated HCNF and nisin coatings on SPI films significantly enhanced tensile strength to 3.43 ± 0.09 MPa, reduced water vapor permeability to 2.48 ± 0.07 × 10-6 g m-1 h-1 Pa-1, and decreased oxygen permeability to 4.29 ± 0.46 × 10-4 cm3 m-1 day-1 atm-1. The conjugate sustained inhibition of S. aureus and L. monocytogenes, and the coating of 9 wt% conjugate on SPI films resulted in a 6-log reduction in bacterial count for both bacteria, while free nisin lost its antimicrobial efficacy during 24 h of pre-incubation. This work suggests feasibility of using HCNF as an effective substrate for nisin immobilization, providing a sustainable functional packaging solution with extended antimicrobial activity.
Collapse
Affiliation(s)
- Kehao Huang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada.
| | - Cunzhi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada; College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.
| | - Yuxin Hu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada; Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Monique Lacroix
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec H7V 1B7, Canada.
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Québec H9X 3V9, Canada.
| |
Collapse
|
3
|
Zhang H, Liang Y, Wu J, Hua Q, Wan X, Renneckar S. Carboxylated xylan nanoparticles prepared by sequential periodate-chlorite oxidation and their application as a highly effective bio-based adsorbent. Int J Biol Macromol 2025; 308:142423. [PMID: 40127799 DOI: 10.1016/j.ijbiomac.2025.142423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Xylan is one of the main biomass components and is considered to have the potential for environmental remediation due to its renewability, biodegradability, and biocompatibility. In this study, xylan extracted from esparto pulp was prepared as xylan nanoparticles (XNPs), which were subsequently modified to carboxylated xylan nanoparticles (CXNPs) through sequential periodate-chlorite oxidation. Characterization of CXNPs demonstrated that the modified CXNPs possessed a core-shell structure, with dicarboxylic acid xylan as the shell and xylan hydrate crystals as the core. The adsorption study revealed the CXNPs with carboxyl groups on the surface exhibited a high adsorption capacity to methylene blue (MB) at 919.6 mg/g. The adsorption mechanism analysis indicated that the adsorption process was controlled by electrostatic interactionsThese results provide a promising modification approach for the development of xylan-based adsorbent materials that can assist in environmental remediation.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xue Wan
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
4
|
Risangud N, Lertwimol T, Sitthisang S, Wongvitvichot W, Uppanan P, Tanodekaew S. The preparation of 3D-printed self-healing hydrogels composed of carboxymethyl chitosan and oxidized dextran via stereolithography for biomedical applications. Int J Biol Macromol 2025; 292:139251. [PMID: 39732244 DOI: 10.1016/j.ijbiomac.2024.139251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study presents a new approach for fabricating 3D-printed self-healing hydrogels via light-assisted 3D printing, utilizing Schiff-base and covalent bonding formations resulting from the reaction between amine and aldehyde functional groups alongside the photopolymerization of methacrylate groups. Two distinct polymers, carboxymethyl chitosan (CMCs) and dextran, were first modified to yield methacrylate-modified carboxymethyl chitosan (CMCs-MA) and oxidized dextran (OD). The structural modifications of these polymers were confirmed using spectroscopic techniques, including 1H NMR and FTIR analyses. Variations in polymer concentration and degree of oxidation resulted in significant differences in the physical properties of resulting hydrogels (e.g., mechanical performance, swelling ratio, and microstructure) and biological responses. The compressive moduli revealed in the range of 14.31 ± 1.38 to 26.20 ± 3.31 kPa. Chondrocytes cultured with various hydrogel formulations exhibited distinct cell morphology and adhesion differences, driven by the interaction between the mechanical and biochemical properties of the hydrogel. We have developed a strategy for fabricating 3D-printed self-healing hydrogels with tunable stiffness, enabling the regulation of chondrocyte morphology and demonstrating significant potential for biomedical applications.
Collapse
Affiliation(s)
- Nuttapol Risangud
- Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Tareerat Lertwimol
- National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Sonthikan Sitthisang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wasupon Wongvitvichot
- Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Uppanan
- National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Siriporn Tanodekaew
- National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Yang J, Yan Y, Huang L, Ma M, Li M, Peng F, Huan W, Bian J. Conductive Eutectogels Fabricated by Dialdehyde Xylan/Liquid Metal-Initiated Rapid Polymerization for Multi-Response Sensors and Self-Powered Applications. ACS NANO 2025; 19:2171-2184. [PMID: 39791699 DOI: 10.1021/acsnano.4c11127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent. DAX acts as a stabilizer for the preparation of LM nanodroplets and plays a crucial role in facilitating ultrafast gelation (less than 2 min) by virtue of its reducing dialdehyde groups. Notably, this fabrication strategy obviates the use of toxic chemical initiators and cross-linkers. The resultant eutectogels exhibit extremely high stretchability (2860%), desirable self-healing ability, high conductivity (0.72 S m-1), biocompatibility, excellent environmental stability, and exceptional responsiveness to tensile strain (GF = 4.08) and temperature (TCR = 5.35% K-1). Benefiting from these integrated features, the conductive eutectogels serve as multifunctional flexible sensors for human motion recognition and temperature monitoring. Furthermore, the eutectogel serves as a pliable electrode in the assembly of a triboelectric nanogenerator (TENG), designed to harvest mechanical energy, convert it into stable electrical outputs, and enable self-powered sensing. This study offers an approach to fabricating multifunctional integrated conductive eutectogels, making it a step closer to the development of intelligent flexible electronics.
Collapse
Affiliation(s)
- Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yin Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lingzhi Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Mahmoudi C, Tahraoui Douma N, Mahmoudi H, Iurciuc (Tincu) CE, Popa M, Hamcerencu M, Andrițoiu CV. Developing and Characterizing a Biocompatible Hydrogel Obtained by Cross-Linking Gelatin with Oxidized Sodium Alginate for Potential Biomedical Applications. Polymers (Basel) 2024; 16:3143. [PMID: 39599234 PMCID: PMC11598589 DOI: 10.3390/polym16223143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The main goal of this research was to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. The covalent bonds were formed through Schiff base cross-links between protein-free amino groups (NH2) from the lysine residue and aldehyde groups (CHO) produced by oxidizing sodium alginate with NaIO4, while the ionic bonds were achieved using Mg2+ ions. Hydrogel films were obtained by varying the molar ratios of -CHO/-NH2 under different pH conditions (3.5 and 5.5). The presence of aldehyde groups in the oxidized sodium alginate (OSA) was confirmed using FTIR and NMR spectroscopy. The oxidation degree was monitored over 48 h, and the influence of temperature was examined. Results showed that higher -CHO/-NH2 molar ratios led to increased conversion index values of NH2 groups, and a decrease in swelling degree values was observed in mediums with pH values of 5.5 and 7.4. The encapsulation and release efficiency of propolis decreased with an increase in the hydrogel cross-linking degree. UV irradiation enhanced the antioxidant activity of both free and encapsulated propolis. These findings offer valuable insights for the biomedical and pharmaceutical fields into designing biocompatible hydrogels for propolis immobilization, with potential for controlled release.
Collapse
Affiliation(s)
- Chahrazed Mahmoudi
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria; (C.M.); (N.T.D.)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Naïma Tahraoui Douma
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria; (C.M.); (N.T.D.)
| | - Hacene Mahmoudi
- National Higher School of Nanosciences and Nanotechnologies, Algiers 16000, Algeria;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | | | - Călin Vasile Andrițoiu
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania;
| |
Collapse
|
7
|
Lü B, Shi M, Shao L, Wen X, Zhao T, Rao J, Chen G, Peng F. Xylan-based full-color room temperature phosphorescence materials enabled by imine chemistry. Int J Biol Macromol 2024; 281:135930. [PMID: 39443170 DOI: 10.1016/j.ijbiomac.2024.135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Developing sustainable matrix and efficient bonding mode for preparing room temperature phosphorescence (RTP) materials with full-color afterglows is attractive but still challenging. Here, xylan, a hemicellulose by-product from the paper mill, is used to construct full-color RTP materials based on imine bonds. Xylan is oxidation by periodate to introduce aldehyde groups to increase reaction sites; aromatic amines with different π conjugations can be readily anchored to dialdehyde xylan (DAX) by imine chemistry. The dual rigid environments were constructed by hydrogen bonding and imine covalent bonding, which can facilitate the triplet population and suppress non-radiative transitions, thus the xylan derivatives display satisfactory RTP performances. As the degree of conjugation of the chromophore increases, the afterglow colors can be changed from blue to green, yellow, and then to red. Thus, such a universal, facile, and eco-friendly strategy can be used to fabricate full-color RTP materials, which show a bright future in information encryption and advanced anti-counterfeiting. These results unambiguously state that the biodegradable paper mill waste-based RTP materials are convincingly expected to replace and surpass petroleum polymer-based counterparts.
Collapse
Affiliation(s)
- Baozhong Lü
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meichao Shi
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lupeng Shao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xia Wen
- Industry Development and Planning Institute, National Forestry and Grassland Administration, Beijing 100010, China
| | - Tao Zhao
- Hebei Advanced Paper-Based Functional Materials Technology Innovation Center, Sinolight Specialty Fiber Products Co., Ltd., Langfang 065000, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Yang B, Fang X, Chen L, Du M, Din ZU, Wang Y, Zhuang K, Shen Q, Ding W. Ozone modification of waxy rice starch nanocrystals: Effects on the multi-scale structural and surface properties. Int J Biol Macromol 2024; 278:134500. [PMID: 39128765 DOI: 10.1016/j.ijbiomac.2024.134500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The rich active hydroxyl groups on starch nanocrystals (SNC) surface limits its dispersion and stability in the aqueous phase. To address this issue, ozone modification for 0 (SNC), 0.5 (SNC-1), 1 (SNC-2), 1.5 (SNC-3), and 2 h (SNC-4) as compared to conventionally chemical methods was applied to functionally modify the SNC. The impact of ozone treatment on the structural and surface characteristics of waxy rice starch nanocrystals. The findings revealed that longer ozone treatment durations favored the formation of carbonyl groups in starch molecules. Initially, ozone oxidized the hydroxyl group of the macromolecule. Once the carbonyl groups formed, the cross-linking reaction occurred among starch nanocrystals through condensation reactions, leading to the increasing molecular orderliness. X-ray photoelectron spectroscopy, X-ray diffraction and Small-angle X-ray scattering analyses of SNC-2 supported this finding with a reduced O/C ratio, and implied that surface oxidation did not alter the crystal type but rather enhanced molecular hydration in an aqueous system, leading to increased interfacial thickness and fractal dimension. Additionally, ozone oxidation improved surface properties such as charge and hydrophobicity. Oxidized SNC also exhibited altered gelatinization properties due to surface degradation. This study offers a promising strategy for enhancing SNC surface properties, crucial for food science applications.
Collapse
Affiliation(s)
- Bingjin Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiao Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| | - Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Microbiology and Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Qian Shen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China.
| |
Collapse
|
9
|
Lofts A, Campea MA, Winterhelt E, Rigg N, Rivera NP, Macdonald C, Frey BN, Mishra RK, Hoare T. In situ-gelling hydrophobized starch nanoparticle-based nanoparticle network hydrogels for the effective delivery of intranasal olanzapine to treat brain disorders. Int J Biol Macromol 2024; 277:134385. [PMID: 39111489 DOI: 10.1016/j.ijbiomac.2024.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Intranasal (IN) delivery offers potential to deliver antipsychotic drugs with improved efficacy to the brain. However, the solubilization of such drugs and the frequency of required re-application both represent challenges to its practical implementation in treating various mental illnesses including schizophrenia. Herein, we report a sprayable nanoparticle network hydrogel (NNH) consisting of hydrophobically-modified starch nanoparticles (SNPs) and mucoadhesive chitosan oligosaccharide lactate (COL) that can gel in situ within the nasal cavity and release ultra-small penetrative SNPs over time. Hydrophobization of the SNPs enables enhanced uptake and prolonged release of poorly water soluble drugs such as olanzapine from the NNH depot through mucous and ultimately into the brain via the nose-to-brain (N2B) pathway. The hydrogel shows high in vitro cytocompatibility in mouse striatal neuron and human primary nasal cell lines and in vivo efficacy in an amphetamine-induced pre-clinical rat schizophrenia model, with IN-delivered NNH hydrogels maintaining successful attenuation of locomotor activity for up to 4 h while all other tested treatments (drug-only IN or conventional intraperitoneal delivery) failed to attenuate at any time point past 0.5 h. As such, in situ-gelling NNHs represent a safe excipient for the IN delivery of hydrophobic drugs directly to the brain using customized SNPs that exhibit high penetration and drug complexing properties to maximize effective drug delivery.
Collapse
Affiliation(s)
- Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Matthew A Campea
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Erica Winterhelt
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Nicolette Rigg
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Nahieli Preciado Rivera
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cameron Macdonald
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
10
|
Tincu (Iurciuc) CE, Daraba OM, Jérôme C, Popa M, Ochiuz L. Albumin-Based Hydrogel Films Covalently Cross-Linked with Oxidized Gellan with Encapsulated Curcumin for Biomedical Applications. Polymers (Basel) 2024; 16:1631. [PMID: 38931981 PMCID: PMC11207739 DOI: 10.3390/polym16121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine serum albumin (BSA) hydrogels are non-immunogenic, low-cost, biocompatible, and biodegradable. In order to avoid toxic cross-linking agents, gellan was oxidized with NaIO4 to obtain new functional groups like dialdehydes for protein-based hydrogel cross-linking. The formed dialdehyde groups were highlighted with FT-IR and NMR spectroscopy. This paper aims to investigate hydrogel films for biomedical applications obtained by cross-linking BSA with oxidized gellan (OxG) containing immobilized β-cyclodextrin-curcumin inclusion complex (β-CD-Curc) The β-CD-Curc improved the bioavailability and solubility of Curc and was prepared at a molar ratio of 2:1. The film's structure and morphology were evaluated using FT-IR spectroscopy and SEM. The swelling degree (Q%) values of hydrogel films depend on hydrophilicity and pH, with higher values at pH = 7.4. Additionally, the conversion index of -NH2 groups into Schiff bases increases with an increase in OxG amount. The polymeric matrix provides protection for Curc, is non-cytotoxic, and enhances antioxidant activity. At pH = 5.5, the skin permeability and release efficiency of encapsulated curcumin were higher than at pH = 7.4 because of the interaction of free aldehyde and carboxylic groups from hydrogels with amine groups from proteins present in the skin membrane, resulting in a better film adhesion and more efficient curcumin release.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Oana Maria Daraba
- Faculty of Dental Medicine, “Apollonia” University, 11 Pacurari Street, 700355 Iasi, Romania;
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, Complex and Entangled Systems from Atoms to Materials, University of Liège, 4000 Liège, Belgium;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University, 11 Pacurari Street, 700355 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, Sector 5, 050044 Bucureşti, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| |
Collapse
|
11
|
Yu Y, Yang M, Zhao H, Zhang C, Liu K, Liu J, Li C, Cai B, Guan F, Yao M. Natural blackcurrant extract contained gelatin hydrogel with photothermal and antioxidant properties for infected burn wound healing. Mater Today Bio 2024; 26:101113. [PMID: 38933414 PMCID: PMC11201118 DOI: 10.1016/j.mtbio.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.
Collapse
Affiliation(s)
- Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Bingjie Cai
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Janewithayapun R, Hedenqvist MS, Cousin F, Idström A, Evenäs L, Lopez-Sanchez P, Westman G, Larsson A, Ström A. Nanostructures of etherified arabinoxylans and the effect of arabinose content on material properties. Carbohydr Polym 2024; 331:121846. [PMID: 38388051 DOI: 10.1016/j.carbpol.2024.121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
To further our understanding of a thermoplastic arabinoxylan (AX) material obtained through an oxidation-reduction-etherification pathway, the role of the initial arabinose:xylose ratio on the material properties was investigated. Compression molded films with one molar substitution of butyl glycidyl ether (BGE) showed markedly different tensile behaviors. Films made from low arabinose AX were less ductile, while those made from high arabinose AX exhibited elastomer-like behaviors. X-ray scattering confirmed the presence of nanostructure formation resulting in nano-domains rich in either AX or BGE, from side chain grafting. The scattering data showed variations in the presence of ordered structures, nano-domain sizes and their temperature response between AX with different arabinose contents. In dynamic mechanical testing, three transitions were observed at approximately -90 °C, -50 °C and 80 °C, with a correlation between samples with more structured nano-domains and those with higher onset transition temperatures and lower storage modulus decrease. The mechanical properties of the final thermoplastic AX material can therefore be tuned by controlling the composition of the starting material.
Collapse
Affiliation(s)
- Ratchawit Janewithayapun
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mikael S Hedenqvist
- FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR 12, CEA-CNRS, 91191 Gif Sur Yvette, France
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Patricia Lopez-Sanchez
- Department of Analytical Chemistry, Nutrition, and Food Science. Facultad de Ciencias, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
13
|
Zhai Z, Edgar KJ. Polysaccharide Aldehydes and Ketones: Synthesis and Reactivity. Biomacromolecules 2024; 25:2261-2276. [PMID: 38490188 PMCID: PMC11005020 DOI: 10.1021/acs.biomac.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Polysaccharides are biodegradable, abundant, sustainable, and often benign natural polymers. The achievement of selective modification of polysaccharides is important for targeting specific properties and structures and will benefit future development of highly functional, sustainable materials. The synthesis of polysaccharides containing aldehyde or ketone moieties is a promising tool for achieving this goal because of the rich chemistry of aldehyde or ketone groups, including Schiff base formation, nucleophilic addition, and reductive amination. The obtained polysaccharide aldehydes or ketones themselves have rich potential for making useful materials, such as self-healing hydrogels, polysaccharide-protein therapeutic conjugates, or drug delivery vehicles. Herein, we review recent advances in synthesizing polysaccharides containing aldehyde or ketone moieties and briefly introduce their reactivity and corresponding applications.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Maßmann SC, Metselaar GA, van Dijken DJ, van den Berg KJ, Witte MD, Minnaard AJ. Regioselective palladium-catalysed aerobic oxidation of dextran and its use as a bio-based binder in paperboard coatings. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4005-4012. [PMID: 38571728 PMCID: PMC10986772 DOI: 10.1039/d3gc04204a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
The coatings industry is aiming to replace petrochemical-based binders in products such as paints and lacquers with bio-based alternatives. Native polysaccharide additives are already used, especially as adhesives, and here we show the use of oxidised dextran as a bio-based binder additive. Linear dextran with a molecular weight of 6 kDa was aerobically oxidised in water at the C3-position of its glucose units, catalysed by [(neocuproine)PdOAc]2(OTf)2. The resulting keto-dextran with different oxidation degrees was studied using adipic dihydrazide as a crosslinker in combination with the commercial petrochemical-based binder Joncryl®. Coating experiments show that part of the Joncryl® can be replaced by keto-dextran while maintaining the desired performance.
Collapse
Affiliation(s)
- Sarina C Maßmann
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | | | | | | | - Martin D Witte
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
15
|
Shi X, Bi R, Wan Z, Jiang F, Rojas OJ. Solid Wood Modification toward Anisotropic Elastic and Insulative Foam-Like Materials. ACS NANO 2024; 18:7959-7971. [PMID: 38501309 DOI: 10.1021/acsnano.3c10650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The methods used to date to produce compressible wood foam by top-down approaches generally involve the removal of lignin and hemicelluloses. Herein, we introduce a route to convert solid wood into a super elastic and insulative foam-like material. The process uses sequential oxidation and reduction with partial removal of lignin but high hemicellulose retention (process yield of 72.8%), revealing fibril nanostructures from the wood's cell walls. The elasticity of the material is shown to result from a lamellar structure, which provides reversible shape recovery along the transverse direction at compression strains of up to 60% with no significant axial deformation. The compressibility is readily modulated by the oxidation degree, which changes the crystallinity and mobility of the solid phase around the lumina. The performance of the highly resilient foam-like material is also ascribed to the amorphization of cellulosic fibrils, confirmed by experimental and computational (molecular dynamics) methods that highlight the role of secondary interactions. The foam-like wood is optionally hydrophobized by chemical vapor deposition of short-chained organosilanes, which also provides flame retardancy. Overall, we introduce a foam-like material derived from wood based on multifunctional nanostructures (anisotropically compressible, thermally insulative, hydrophobic, and flame retardant) that are relevant to cushioning, protection, and packaging.
Collapse
Affiliation(s)
- Xuetong Shi
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ran Bi
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry and Department of Wood Science, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
16
|
Zhou Y, Yao Y, Zhai Z, Mohamed MA, Mazzini F, Qi Q, Bortner MJ, Taylor LS, Edgar KJ. Reductive amination of oxidized hydroxypropyl cellulose with ω-aminoalkanoic acids as an efficient route to zwitterionic derivatives. Carbohydr Polym 2024; 328:121699. [PMID: 38220336 DOI: 10.1016/j.carbpol.2023.121699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Zwitterionic polymers, with their equal amounts of cationic and anionic functional groups, have found widespread utility including as non-fouling coatings, hydrogel materials, stabilizers, antifreeze materials, and drug carriers. Polysaccharide-derived zwitterionic polymers are attractive because of their sustainable origin, potential for lower toxicity, and possible biodegradability, but previous methods for synthesis of zwitterionic polysaccharide derivatives have been limited in terms of flexibility and attainable degree of substitution (DS) of charged entities. We report herein successful design and synthesis of zwitterionic polysaccharide derivatives, in this case based on cellulose, by reductive amination of oxidized 2-hydroxypropyl cellulose (Ox-HPC) with ω-aminoalkanoic acids. Reductive amination products could be readily obtained with DS(cation) (= DS(anion)) up to 1.6. Adduct hydrophilic/hydrophobic balance (amphiphilicity) can be influenced by selecting the appropriate chain length of the ω-aminoalkanoic acid. This strategy is shown to produce a range of amphiphilic, water-soluble, moderately high glass transition temperature (Tg) polysaccharide derivatives in just a couple of efficient steps from commercially available building blocks. The adducts were evaluated as crystallization inhibitors. They are strong inhibitors of crystallization even for the challenging, poorly soluble, fast-crystallizing prostate cancer drug enzalutamide, as supported by surface tension and Flory-Huggins interaction parameter results.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Yimin Yao
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mennatallah A Mohamed
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fiorella Mazzini
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
17
|
Simon J, Schlapp-Hackl I, Sapkota J, Ristolainen M, Rosenau T, Potthast A. Towards Tailored Dialdehyde Cellulose Derivatives: A Strategy for Tuning the Glass Transition Temperature. CHEMSUSCHEM 2024; 17:e202300791. [PMID: 37923704 DOI: 10.1002/cssc.202300791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The derivatization of dialdehyde cellulose (DAC) has received increasing attention in the development of sustainable thermoplastics. In this study, a series of dialcohol celluloses were generated by borohydride reduction, which exhibited glass transition temperature (Tg ) values ranging from 23 to 109 °C, depending on the initial degree of oxidation (DO) of the DAC intermediate. However, the DAC derivatives did not exhibit thermoplastic behavior when the DO of the modified DAC was below 26 %. The influence of introduced side chains was highlighted by comparing DAC-based thermoplastic materials obtained by either oximation or borohydride reduction. Our results provide insights into the generation of DAC-based thermoplastics and highlight a strategy for tailoring the Tg by adjusting the DO during the periodate oxidation step and selecting appropriate substituents in subsequent modifications.
Collapse
Affiliation(s)
- Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Inge Schlapp-Hackl
- Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Matti Ristolainen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
18
|
Zhu J, Xu H, Hu Q, Yang Y, Ni S, Peng F, Jin X. High stretchable and tough xylan-g-gelatin hydrogel via the synergy of chemical cross-linking and salting out for strain sensors. Int J Biol Macromol 2024; 261:129759. [PMID: 38281523 DOI: 10.1016/j.ijbiomac.2024.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Stretchable and tough hydrogels have been extensively used in tissue engineering scaffolds and flexible electronics. However, it is still a significant challenge to prepare hydrogels with both tensile strength and toughness by utilizing xylan, which is abundant in nature. Herein, we present a novel hydrogel of carboxymethyl xylan(CMX) graft gelatin (G) and doped with conductive hydroxyl carbon nanotubes (OCNT). CMX and G are combined through amide bonding as well as intermolecular hydrogen bonding to form a semi-interpenetrating hydrogel network. The hydrogel was further subjected to salting-out treatment, which induced the aggregation of the CMX-g-G molecular chain and the formation of chain bundles to toughen the hydrogel, the tensile strain, tensile stress, and toughness of CMX-g-G hydrogels were 1.547 MPa, 324 %, and 2.31 MJ m-3, respectively. In addition, OCNT was used as a conductive filler to impart electrical conductivity and further improve the mechanical properties of CMX-g-G/OCNT hydrogel, and a tensile strength of 1.62 MPa was obtained. Thus, the synthesized CMX-g-G/OCNT hydrogel can be used as a reliable and sensitive strain sensor for monitoring human activity. This study opens up new horizons for the preparation of xylan-based high-performance hydrogels.
Collapse
Affiliation(s)
- Jingqiao Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hanping Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Qiangli Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yujia Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Siyang Ni
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Oliveira MX, Canafístula FVC, Ferreira CRN, Fernandes LVO, de Araújo AR, Ribeiro FOS, Souza JMT, Lima IC, Assreuy AMS, Silva DA, Filho JDBM, Araújo AJ, Maciel JS, Feitosa JPA. Hydrogels dressings based on guar gum and chitosan: Inherent action against resistant bacteria and fast wound closure. Int J Biol Macromol 2023; 253:127281. [PMID: 37806422 DOI: 10.1016/j.ijbiomac.2023.127281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Hydrogels made with depolymerized guar gum, oxidized with theoretical oxidation degrees of 20, 35 and 50 %, were obtained via Schiff's base reaction with N-succinyl chitosan. The materials obtained were subjected to characterization by FT-IR, rheology, swelling, degradation, and morphology. Additionally, their gelation time categorized all three hydrogels as injectable. The materials' swelling degrees in Phosphate-Buffered Saline (PBS) were in the range of 26-35 g of fluid/g gel and their pore size distribution was heterogeneous, with pores varying from 67 to 93 μm. All hydrogels degraded in PBS solution, but maintained around 40 % of their initial mass after 28 days, which was more than enough time for wound healing. The biomaterials were also flexible, self-repairing, adhesive and cytocompatible and presented intrinsic actions, regardless of the presence of additives or antibiotics, against gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli). However, the most pronounced bactericidal effect was against resistant Staphylococcus aureus - MRSA. In vivo assays, performed with 50 % oxidized gum gel, demonstrated that this material exerted anti-inflammatory effects, accelerating the healing process and restoring tissues by approximately 99 % within 14 days. In conclusion, these hydrogels have unique characteristics, making them excellent candidates for wound-healing dressings.
Collapse
Affiliation(s)
- Matheus X Oliveira
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | - Carlos Rhamon N Ferreira
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Ludmila Virna O Fernandes
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Alyne R de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Fábio Oliveira S Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jessica Maria T Souza
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Iásly C Lima
- Superior Institute of Biomedical Sciences, State University of Ceará, UECE, Fortaleza, CE, Brazil
| | - Ana Maria S Assreuy
- Superior Institute of Biomedical Sciences, State University of Ceará, UECE, Fortaleza, CE, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - José Delano Barreto M Filho
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Ana Jérsia Araújo
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jeanny S Maciel
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Judith Pessoa A Feitosa
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil.
| |
Collapse
|
20
|
Sharma K, Kaur M, Tewatia P, Kumar V, Paulik C, Yoshitake H, Sharma M, Rattan G, Singhal S, Kaushik A. Ultra-sensitive detection and scavenging of arsenic ions and ciprofloxacin using 3D multipurpose hemicellulose based aerogel: Adsorption mechanism and RSM optimization. BIORESOURCE TECHNOLOGY 2023; 389:129825. [PMID: 37797803 DOI: 10.1016/j.biortech.2023.129825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Trace level detection and efficient removal of arsenite ions (As (III)) and ciprofloxacin (CPR) antibiotic was achieved using hemicellulose based ratiometric fluorescent aerogel. Hemicellulose derived from rice straw was oxidised to dialdehyde hemicellulose followed by crosslinking using chitosan via a Schiff base reaction (C = N) yielding a highly porous 3D fluorescent aerogel (CS@DAHCA). Various factors governing adsorption were analyzed by applying response surface methodology (RSM) approach. CS@DAHCA exhibited ultra-trace level monitoring with the limit of detection of 3.529 pM and 55.2 nM for As (III) and CPR, respectively. The CS@DAHCA showed maximum adsorption capacity of 185 μg g-1 and 454 mg g-1 for As (III) and CPR, respectively. Finally, the feasibility of CS@DAHCA was ascertained for real water samples confirming it as promising candidate for remediation of As (III) and CPR.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Vijay Kumar
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Austria
| | - Hideaki Yoshitake
- Division of Materials and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan
| | - Mukta Sharma
- Department of Civil Engineering, IKG Punjab Technical University, Jalandhar
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
21
|
Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates - Advanced functional materials for biomedical applications. Carbohydr Polym 2023; 321:121276. [PMID: 37739495 DOI: 10.1016/j.carbpol.2023.121276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
22
|
Bergal A, Andac M. Detailed investigation and influence of oxidation degree on synthesis, characterization and antibacterial activity of β- cyclodextrin. Carbohydr Res 2023; 533:108936. [PMID: 37708794 DOI: 10.1016/j.carres.2023.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Oxidation of β-cyclodextrin (β-CD) using varying molar ratios of sodium periodate (NaIO4) was investigated in detail on synthesis, characterization and antibacterial property. Synthesis and characterization results showed that Oxidized β-cyclodextrins (OX-β-CDs) were obtained and aldehyde (CHO) groups were successfully introduced. Our results demonstrated that aldehyde content and yield increased with increasing NaIO4 molar amount. However, the structure of β-CD was degraded as a result of glycosidic ring opening with increasing stoichiometric ratio of NaIO4/β-CD to 5/1 and 7/1. Aldehyde functional groups in OX-β-CDs were characterized by employing FTIR, 1H NMR, XRD, SEM techniques and confirmed by the detection of CHO peak at 1730 cm-1 in the FTIR and detection of the aldehyde H peak between 9 to 10 ppm in the 1H NMR spectrum. In addition, SEM and XRD of OX-β-CDs showed alterations in the morphological and crystal structure (transforming from crystalline to amorphous) of β-CD as a result of increasing oxidation. Especially, antibacterial activity of OX-β-CDs was investigated against both Gram-negative and Gram-positive bacteria by using the minimal inhibitory concentration (MIC) and the Disk diffusion method. The results showed that OX-β-CDs possessed good antibacterial activity, which can destroy the bacterial cell wall, and may be used as an antibacterial agent.
Collapse
Affiliation(s)
- Ayhan Bergal
- Department of Nanoscience and Nanotechnology, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, 55200, Kurupelit, Samsun, Turkey.
| | - Muberra Andac
- Department of Chemistry, Faculty of Science and Literature, Ondokuz Mayıs University, 55200, Kurupelit, Samsun, Turkey.
| |
Collapse
|
23
|
Xu Y, Xu Y, Deng W, Chen H, Xiong J. Extracting dialdehyde cellulose nanocrystals using choline chloride/urea-based deep eutectic solvents: A comparative study in NaIO 4 pre-oxidation and synchronous oxidation. Int J Biol Macromol 2023; 246:125604. [PMID: 37392908 DOI: 10.1016/j.ijbiomac.2023.125604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Dialdehyde cellulose nanocrystals (DCNC) are defined as C2 and C3 aldehyde nanocellulose, which can be used as raw materials for nanocellulose derivatization, owing to the high activity of aldehyde groups. Herein, a comparative study in NaIO4 pre-oxidation and synchronous oxidation is investigated for DCNC extraction via choline chloride (ChCl)/urea-based deep eutectic solvent (DES). Ring-liked DCNC with an average particle size of 118 ± 11 nm, a yield of 49.25 %, an aldehyde group content of 6.29 mmol/g, a crystallinity of 69 %, and rod-liked DCNC with an average particle size of 109 ± 9 nm, a yield of 39.40 %, an aldehyde group content of 3.14 mmol/g, a crystallinity of 75 % can be extracted via optimized DES treatment combined with pre-oxidation and synchronous oxidation, respectively. In addition, the average particle size, size distribution, and aldehyde group content of DCNC were involved. TEM, FTIR, XRD, and TGA results reveal the variation of microstructure, chemical structure, crystalline structure, and thermostability of two kinds of DCNC during extraction even though the obtained DCNC exhibiting different micromorphology, pre-oxidation, or synchronous oxidation during ChCl/urea-based DES treatment can be considered as an efficient approach for DCNC extraction.
Collapse
Affiliation(s)
- Yang Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Wenhuan Deng
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China
| | - Hao Chen
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China
| | - Jianhua Xiong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
24
|
Debugging periodate oxidation of cellulose: Why following the common protocol of quenching excess periodate with glycol is a bad idea. Carbohydr Polym 2023; 310:120691. [PMID: 36925234 DOI: 10.1016/j.carbpol.2023.120691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Periodate oxidation of cellulose to produce "dialdehyde cellulose" (DAC) has lately received increasing attention in sustainable materials development. Despite the longstanding research interest and numerous reported studies, there is still an enormous variation in the proposed preparation and work-up protocols. This apparently reduces comparability and causes reproducibility problems in DAC research. Two simple but prevalent work-up protocols, namely glycol quenching and filtration/washing, were critically examined and compared, resulting in this cautionary note. Various analytical techniques were applied to quantify residual iodine species and organic contaminations from quenching side reactions. The commonly practiced glycol addition cannot remove all oxidising iodine compounds. Both glycol and the formed formaldehyde are incorporated into DAC's polymeric structure. Quenching of excess periodate with glycol can thus clearly be discouraged. Instead, simple washing protocols are recommended which do not bear the risk of side reactions with organic contaminants. While simple washing was sufficient for mildly oxidised celluloses, higher oxidised samples were more likely to trap residual (per)iodate, as determined by thiosulfate titration. For work-up, simple washing with water is proposed while determining potential iodine contaminations after washing with a simple colorimetric test and, if needed, removal of residual periodate by washing with an aqueous sodium thiosulfate solution.
Collapse
|
25
|
Albini F, Biondi B, Lastella L, Peggion C. Oxime and thiazolidine chemoselective ligation reactions: a green method for cotton functionalization. CELLULOSE (LONDON, ENGLAND) 2023; 30:5573-5587. [PMID: 37304190 PMCID: PMC10193351 DOI: 10.1007/s10570-023-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
During the last years, the need to create textile materials provided with peculiar properties has grown significantly. In particular, new textiles are studied to be a first protection in the prevention of living organisms from pathogens. In this regard, modifying a textile material with biologically active compounds, such as antibacterial or antiviral peptides would be useful for many applications. Our work shows a study on the possibility of modifying cotton fabrics with peptides using thiazolidine and oxime chemoselective ligations. For this purpose, an enzymatic oxidation of cellulose in a heterogeneous phase and the possibility to reuse the oxidation solution for multiple times was successfully applied. Model peptides have been designed and synthesized in order to set up the conditions for conjugating peptides to cotton via either thiazolidine or oxime bond. A systematic study of the time, pH, and quantities needed for the best reaction conditions has been conducted. The efficiency and stability of the two chemoselective ligation bonds have been studied and compared. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10570-023-05253-1.
Collapse
Affiliation(s)
- Francesca Albini
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR - Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Luana Lastella
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Cristina Peggion
- Department of Chemistry, University of Padova, 35131 Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR - Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
26
|
Li J, Du M, Din ZU, Xu P, Chen L, Chen X, Wang Y, Cao Y, Zhuang K, Cai J, Lyu Q, Chang X, Ding W. Multi-scale structure characterization of ozone oxidized waxy rice starch. Carbohydr Polym 2023; 307:120624. [PMID: 36781277 DOI: 10.1016/j.carbpol.2023.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The elucidation of multi-scale structural variation and oxidation reaction mechanism of ozone oxidized waxy rice starch molecules remains a big challenge, limiting its development of intensive processing. In the present work, the changes in the structure of waxy rice starch after ozone treatment were systematically researched by various characterization methods. The study has shown that with the increase in ozone oxidation time, the granules of oxidized starch were polygons with multiple face depressions. It was also observed that ozone first attacked the amorphous zone of the starch granules and then penetrated the crystalline zone. Combining 1D and 2D NMR (1H NMR, 13C NMR, HSQC and HMBC) and other methods, it was proved that ozone oxidation led to ring splitting between C2 and C3 of the glucose unit. The resulting hemiacetal groups showed different types of structures. Among them, the main structures were intramolecular acetals and intermolecular hemiacetals. This research offered theoretical guidance for the utilization of ozone oxidation technology for starch modification and the development of waxy rice new foods.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Khyber Pakhtunkhawa, Pakistan
| | - Ping Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yang Cao
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qingyun Lyu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xianhui Chang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
27
|
Palasingh C, Kargl R, Kleinschek KS, Schaubeder J, Spirk S, Ström A, Nypelö T. Morphology and swelling of thin films of dialcohol xylan. Carbohydr Polym 2023; 313:120810. [PMID: 37182942 DOI: 10.1016/j.carbpol.2023.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Polysaccharides are excellent network formers and are often processed into films from water solutions. Despite being hydrophilic polysaccharides, the typical xylans liberated from wood are sparsely soluble in water. We have previously suggested that an additional piece to the solubilization puzzle is modification of the xylan backbone via oxidative cleavage of the saccharide ring. Here, we demonstrate the influence of the degree of modification, i.e., degree of oxidation (DO) on xylan solubilization and consequent film formation and stability. Oxidized and reduced wood xylans (i.e., dialcohol xylans) with the highest DO (77 %) within the series exhibited the smallest hydrodynamic diameter (dh) of 60 nm in dimethylsulfoxide (DMSO). We transferred the modified xylans into films credit to their established solubility and then quantified the film water interactions. Dialcohol xylans with intermediate DOs (42 and 63 %) did not form continuous films. The films swelled slightly when subjected to humidity. However, the film with the highest DO demonstrated a significant moisture uptake that depended on the film mass and was not observed with the other modified grades or with unmodified xylan.
Collapse
|
28
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
29
|
Dhiman A, Sharma AK, Bhardwaj D, Agrawal G. Biodegradable dual stimuli responsive alginate based microgels for controlled agrochemicals release and soil remediation. Int J Biol Macromol 2023; 228:323-332. [PMID: 36572087 DOI: 10.1016/j.ijbiomac.2022.12.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
To meet the growing food demand of increasing world population while reducing the harmful environmental effects of agrochemicals, development of smart nanoformulation is of prime importance. Herein, dual stimuli responsive alginate based microgels (OAlgDP MGs) (≈160 nm) are developed for controlled release of agrochemicals and soil remediation. These microgels are prepared using octyl amine functionalized alginate which is crosslinked by 3, 3'-dithiopropionohydrazide crosslinker providing both hydrazone and disulfide bonds in microgels network. OAlgDP MGs are further loaded with hydrophobic diuron herbicide displaying ≈85 % encapsulation efficiency. Sustained release of diuron is obtained in 2 mM GSH (≈100 % after 380 h) and at pH 5 (≈72 % after 240 h). Furthermore, OAlgDP MGs are nontoxic up to 150 μg/mL against HEK293T cells while their reduced form is capable of capturing the heavy metal ions (Cu2+ and Hg2+) showing the potential of the developed system for moving toward sustainable agriculture.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Amit Kumar Sharma
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India.
| |
Collapse
|
30
|
Simon J, Fliri L, Sapkota J, Ristolainen M, Miller SA, Hummel M, Rosenau T, Potthast A. Reductive Amination of Dialdehyde Cellulose: Access to Renewable Thermoplastics. Biomacromolecules 2023; 24:166-177. [PMID: 36542819 PMCID: PMC9832504 DOI: 10.1021/acs.biomac.2c01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reductive amination of dialdehyde cellulose (DAC) with 2-picoline borane was investigated for its applicability in the generation of bioderived thermoplastics. Five primary amines, both aliphatic and aromatic, were introduced to the cellulose backbone. The influences of the side chains on the course of the reaction were examined by various analytical techniques with microcrystalline cellulose as a model compound. The obtained insights were transferred to a 39%-oxidized softwood kraft pulp to study the thermal properties of thereby generated high-molecular-weight thermoplastics. The number-average molecular weights (Mn) of the diamine celluloses, ranging from 60 to 82 kD, were investigated by gel permeation chromatography. The diamine celluloses exhibited glass transition temperatures (Tg) from 71 to 112 °C and were stable at high temperatures. Diamine cellulose generated from aniline and DAC showed the highest conversion, the highest Tg (112 °C), and a narrow molecular weight distribution (D̵ of 1.30).
Collapse
Affiliation(s)
- Jonas Simon
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria
| | - Lukas Fliri
- Department
of Bioproducts and Biosystems, Aalto University, Aalto0076, Finland
| | - Janak Sapkota
- NE Research
Center, UPM Pulp Research and Innovations, Lappeenranta53200, Finland
| | - Matti Ristolainen
- NE Research
Center, UPM Pulp Research and Innovations, Lappeenranta53200, Finland
| | - Stephen A. Miller
- The
George and Josephine Butler Laboratory for Polymer Research, Department
of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, Aalto University, Aalto0076, Finland
| | - Thomas Rosenau
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria,
| | - Antje Potthast
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria,
| |
Collapse
|
31
|
Heise K, Koso T, King AWT, Nypelö T, Penttilä P, Tardy BL, Beaumont M. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:23413-23432. [PMID: 36438677 PMCID: PMC9664451 DOI: 10.1039/d2ta05277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Tetyana Koso
- Materials Chemistry Division, Chemistry Department, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products 02044 Espoo Finland
| | - Tiina Nypelö
- Chalmers University of Technology 41296 Gothenburg Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering Abu Dhabi United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University Abu Dhabi United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University Abu Dhabi United Arab Emirates
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24 A-3430 Tulln Austria
| |
Collapse
|
32
|
Subbotina E, Ram F, Dvinskikh SV, Berglund LA, Olsén P. Aqueous synthesis of highly functional, hydrophobic, and chemically recyclable cellulose nanomaterials through oxime ligation. Nat Commun 2022; 13:6924. [PMID: 36376337 PMCID: PMC9663568 DOI: 10.1038/s41467-022-34697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanofibril (CNF) materials are candidates for the sustainable development of high mechanical performance nanomaterials. Due to inherent hydrophilicity and limited functionality range, most applications require chemical modification of CNF. However, targeted transformations directly on CNF are cumbersome due to the propensity of CNF to aggregate in non-aqueous solvents at high concentrations, complicating the choice of suitable reagents and requiring tedious separations of the final product. This work addresses this challenge by developing a general, entirely water-based, and experimentally simple methodology for functionalizing CNF, providing aliphatic, allylic, propargylic, azobenzylic, and substituted benzylic functional groups. The first step is NaIO4 oxidation to dialdehyde-CNF in the wet cake state, followed by oxime ligation with O-substituted hydroxylamines. The increased hydrolytic stability of oximes removes the need for reductive stabilization as often required for the analogous imines where aldehyde groups react with amines in water. Overall, the process provides a tailored degree of nanofibril functionalization (2-4.5 mmol/g) with the possible reversible detachment of the functionality under mildly acidic conditions, resulting in the reformation of dialdehyde CNF. The modified CNF materials were assessed for potential applications in green electronics and triboelectric nanogenerators.
Collapse
Affiliation(s)
- Elena Subbotina
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Farsa Ram
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Sergey V. Dvinskikh
- grid.5037.10000000121581746Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44 Stockholm, Sweden
| | - Lars A. Berglund
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Peter Olsén
- grid.5037.10000000121581746Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| |
Collapse
|
33
|
Hao X, Lv Z, Wang H, Rao J, Liu Q, Lü B, Peng F. Top-Down Production of Sustainable and Scalable Hemicellulose Nanocrystals. Biomacromolecules 2022; 23:4607-4616. [DOI: 10.1021/acs.biomac.2c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Qiaoling Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| |
Collapse
|
34
|
Palasingh C, Nakayama K, Abik F, Mikkonen KS, Evenäs L, Ström A, Nypelö T. Modification of xylan via an oxidation-reduction reaction. Carbohydr Polym 2022; 292:119660. [PMID: 35725206 DOI: 10.1016/j.carbpol.2022.119660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
Xylan is a biopolymer readily available from forest resources. Various modification methods, including oxidation with sodium periodate, have been shown to facilitate the engineering applications of xylan. However, modification procedures are often optimized for semicrystalline high molecular weight polysaccharide cellulose rather than for lower molecular weight and amorphous polysaccharide xylan. This paper elucidates the procedure for the periodate oxidation of xylan into dialdehyde xylan and its further reduction into a dialcohol form and is focused on the modification work up. The oxidation-reduction reaction decreased the molecular weight of xylan while increased the dispersity more than 50%. Unlike the unmodified xylan, all the modified grades could be solubilized in water, which we see essential for facilitating the future engineering applications of xylan. The selection of quenching and purification procedures and pH-adjustment of the reduction step had no significant effect on the degree of oxidation, molecular weight and only a minor effect on the hydrodynamic radius in water. Hence, it is possible to choose the simplest oxidation-reduction route without time consuming purification steps within the sequence.
Collapse
Affiliation(s)
- Chonnipa Palasingh
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Koyuru Nakayama
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Felix Abik
- Department of Food and Nutrition, 00014 University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science, 00014 University of Helsinki, Finland
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
35
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
36
|
He J, Wang M, Zhu P, Zhang H, Hu C, Zhang W. Novel polyglycerol-10 dialdehyde mediated cross-linking of sodium caseinate: Preparation, characterization, and improved emulsifying properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Deralia PK, Sonker AK, Lund A, Larsson A, Ström A, Westman G. Side chains affect the melt processing and stretchability of arabinoxylan biomass-based thermoplastic films. CHEMOSPHERE 2022; 294:133618. [PMID: 35066072 DOI: 10.1016/j.chemosphere.2022.133618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hydrophobization of hemicellulose causes melt processing and makes them stretchable thermoplastics. Understanding how native and/or appended side chains in various hemicelluloses after chemical modification affect melt processing and material properties can help in the development of products for film packaging and substrates for stretchable electronics applications. Herein, we describe a one-step and two-step strategy for the fabrication of flexible and stretchable thermoplastics prepared by compression molding of two structurally different arabinoxylans (AX). For one-step synthesis, the n-butyl glycidyl ether epoxide ring was opened to the hydroxyl group, resulting in the introduction of alkoxide side chains. The first step in the two-step synthesis was periodate oxidation. Because the melt processability for AXs having low arabinose to xylose ratio (araf/xylp<0.5) have been limited, two structurally distinct AXs extracted from wheat bran (AXWB, araf/xylp = 3/4) and barley husk (AXBH, araf/xylp = 1/4) were used to investigate the effect of araf/xylp and hydrophobization on the melt processability and properties of the final material. Melt compression processability was achieved in AXBH derived samples. DSC and DMA confirmed that the thermoplastics derived from AXWB and AXBH had dual and single glass transition (Tg) characteristics, respectively, but the thermoplastics derived from AXBH had lower stretchability (maximum 160%) compared to the AXWB samples (maximum 300%). Higher araf/xylp values, and thus longer alkoxide side chains in AXWB-derived thermoplastics, explain the stretchability differences.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden.
| | - Amit Kumar Sonker
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anja Lund
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anette Larsson
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Gunnar Westman
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden.
| |
Collapse
|
38
|
Park S, Park BD. Sustainable Bio-Based Dialdehyde Cellulose for Transforming Crystalline Urea–Formaldehyde Resins into Amorphous Ones to Improve Their Performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydr Polym 2022; 278:118887. [PMID: 34973725 DOI: 10.1016/j.carbpol.2021.118887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022]
Abstract
The properties of dialdehyde celluloses, which are usually generated by periodate oxidation, are highly dependent on the aldehyde content, i.e. the degree of oxidation (DO). Thus far, the established methods for determining the DO in dialdehyde celluloses lack simplicity or sufficient speed. More than 60 dialdehyde cellulose samples with varying aldehyde content were analysed by near-infrared and Fourier-transform infrared spectroscopy. This was found to be a reliable method for quickly predicting the DO if combined with partial least squares regression (PLSR). The proposed PLSR models can predict the DO with a high determination coefficient (R2) of 99% when applied to a single pulp type and 94% when applied to multiple types. This new approach quickly and reliably determines the DO of dialdehyde celluloses. It can be easily implemented in everyday research to save money, time and resources, especially because the raw datasets and measured DO values are provided.
Collapse
|
40
|
Wang Q, Xu W, Koppolu R, van Bochove B, Seppälä J, Hupa L, Willför S, Xu C, Wang X. Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticles. Carbohydr Polym 2022; 276:118780. [PMID: 34823793 DOI: 10.1016/j.carbpol.2021.118780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 01/31/2023]
Abstract
We propose an injectable nanocomposite hydrogel that is photo-curable via light-induced thiol-ene addition between methacrylate modified O-acetyl-galactoglucomannan (GGMMA) and thiolated cellulose nanocrystal (CNC-SH). Compared to free-radical chain polymerization, the orthogonal step-growth of thiol-ene addition allows a less heterogeneous hydrogel network and more rapid crosslinking kinetics. CNC-SH reinforced the GGMMA hydrogel as both a nanofiller and a crosslinker to GGMMA resulting in an interpenetrating network via thiol-ene addition. Importantly, the mechanical stiffness of the GGMMA/CNC-SH hydrogel is mainly determined by the stoichiometric ratio between the thiol groups on CNC-SH and the methacrylate groups in GGMMA. Meanwhile, the bioactive glass nanoparticle (BaGNP)-laden hydrogels of GGMMA/CNC-SH showed a sustained release of therapeutic ions in simulated body fluid in vitro, which extended the bioactive function of hydrogel matrix. Furthermore, the suitability of the GGMMA/CNC-SH formulation as biomaterial resin to fabricate digitally designed hydrogel constructs via digital light processing (DLP) lithography printing was evaluated.
Collapse
Affiliation(s)
- Qingbo Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Wenyang Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Rajesh Koppolu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Bas van Bochove
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1D, Espoo FI-02150, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1D, Espoo FI-02150, Finland
| | - Leena Hupa
- Laboratory of Molecular Science and Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Stefan Willför
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland.
| |
Collapse
|
41
|
He J, Dai L, Deng Q, Li L. Uncovering the Polydisperse Characteristics of Modification Inhomogeneity for Starch during Oxidation by Sodium Periodate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing He
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- The Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Laixin Dai
- The Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiuhong Deng
- The Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- The Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
42
|
Encina L, Elgueta E, Rivas BL, Pereira M, Sanhueza F. Hydrogels derived from galactoglucomannan hemicellulose with inorganic contaminant removal properties. RSC Adv 2021; 11:35960-35972. [PMID: 35492798 PMCID: PMC9043232 DOI: 10.1039/d1ra06278f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023] Open
Abstract
The adsorption of Cu(ii), Cd(ii), and Pb(ii) ions onto hydrogels derived from modified galactoglucomannan (GGM) hemicellulose was studied. GGM hemicellulose was modified with methacrylate groups (GGM-MA) to incorporate vinyl groups into the polymeric structure, which reacted later with synthetic monomers such as 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). The results show that all the synthesized hydrogels were capable of adsorbing contaminating ions with high adsorption efficiency during short periods of time. Furthermore, an increase in the content of GGM-MA generated a hydrogel (H3) with a similar ion adsorption property to the other hydrogels but with a lesser degree of swelling. The H3 hydrogel had an adsorption capacity of 60.0 mg g−1 Cd(ii), 78.9 mg g−1 Cu(ii), and 174.9 mg g−1 Pb(ii) at 25 °C. This result shows that modified GGM hemicelluloses can be employed as renewable adsorbents to remove Cu(ii), Cd(ii), and Pb(ii) ions from aqueous solutions. The adsorption of Cu(ii), Cd(ii), and Pb(ii) ions onto hydrogels derived from modified galactoglucomannan (GGM) hemicellulose was studied.![]()
Collapse
Affiliation(s)
- Leonidas Encina
- Polymer Department, Faculty of Chemistry, University of Concepción Casilla 160-C Concepción Chile
| | - Elizabeth Elgueta
- Centro de Investigación de Polímeros Avanzados, CIPA Avenida Collao 1202, Edificio de Laboratorios Concepción Chile
| | - Bernabé L Rivas
- Polymer Department, Faculty of Chemistry, University of Concepción Casilla 160-C Concepción Chile
| | - Miguel Pereira
- Departmento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción Casilla 160-C Concepción Chile
| | - Felipe Sanhueza
- Instituto de Materiales y Procesos Termomecánicos, Facultad de Ingeniería, Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
43
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
44
|
Deralia PK, du Poset AM, Lund A, Larsson A, Ström A, Westman G. Hydrophobization of arabinoxylan with n-butyl glycidyl ether yields stretchable thermoplastic materials. Int J Biol Macromol 2021; 188:491-500. [PMID: 34389389 DOI: 10.1016/j.ijbiomac.2021.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
Hemicelluloses are regarded as one of the first candidates for the development of value-added materials due to their renewability, abundance, and functionality. However, because most hemicelluloses are brittle, they can only be processed as a solution and cannot be processed using industrial melt-based polymer processing techniques. In this study, arabinoxylan (AX) was hydrophobized by incorporating butyl glycidyl ether (BuGE) into the hydroxyl groups through the opening of the BuGE epoxide ring, yielding alkoxy alcohols with terminal ethers. The formed BuGE derivatives were melt processable and can be manufactured into stretchable thermoplastic films through compression molding, which has never been done before with hemicellulose modified in a single step. The structural and thermomechanical properties of the one-step synthesis approach were compared to those of a two-step synthesis with a pre-activation step to demonstrate its robustness. The strain at break for the one-step synthesized AX thermoplastic with 3 mol of BuGE is ≈200%. These findings suggest that thermoplastic polymers can be composited with hemicelluloses or that thermoplastic polymers made entirely of hemicelluloses can be designed as packaging and stretchable electronics supports.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden.
| | - Aline Maire du Poset
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Anja Lund
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Anette Larsson
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE- Gothenburg, Sweden
| | - Gunnar Westman
- Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
45
|
Rao J, Lv Z, Chen G, Hao X, Guan Y, Peng P, Su Z, Peng F. Constructing a Novel Xylan-Based Film with Flexibility, Transparency, and High Strength. Biomacromolecules 2021; 22:3810-3818. [PMID: 34347473 DOI: 10.1021/acs.biomac.1c00657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylan-based films have great potential to replace petroleum-based polymers used for packaging and coatings due to their excellent biocompatibility, biodegradability, and good gas barrier properties. However, fabricating a xylan-based film with flexible, transparent, water-proof, and excellent mechanical properties is an enormous challenge. Herein, we manufactured a series of degradable films with adjustable properties via solution-casting using a water-soluble xylan derivative. This is the first report of a pure xylan-based film with high performance, requiring no additives. The tensile strength of the xylan-based film could be controlled by adjusting the aldehyde content, which varied from 105.0 to 132.6 MPa. The smallest initial water contact angle of the xylan-based films is 93.26°, indicating that these films are hydrophobic. This work shows a simple and viable route toward manufacturing xylan-based films with high tensile strength, flexibility, and transparency, which can be used for packaging materials and coatings.
Collapse
Affiliation(s)
- Jun Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Lv
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Gegu Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiang Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ying Guan
- Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing 100102, China
| | - Feng Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
46
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
47
|
Zhou L, Chen F, Hou Z, Chen Y, Luo X. Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties. CHEMICAL ENGINEERING JOURNAL 2021; 409:128224. [DOI: 10.1016/j.cej.2020.128224] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Palasingh C, Ström A, Amer H, Nypelö T. Oxidized xylan additive for nanocellulose films - A swelling modifier. Int J Biol Macromol 2021; 180:753-759. [PMID: 33727189 DOI: 10.1016/j.ijbiomac.2021.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
Polymeric wood hemicelluloses are depicted to join cellulose, starch and chitosan as key polysaccharides for sustainable materials engineering. However, the approaches to incorporate hemicelluloses in emerging bio-based products are challenged by lack of specific benefit, other than the biomass-origin, although their utilization would contribute to sustainable material use since they currently are a side stream that is not valorized. Here we demonstrate wood-xylans as swelling modifiers for neutral and charged nanocellulose films that have already entered the sustainable packaging applications, however, suffer from humidity sensitivity. The oxidative modification is used to modulate the water-solubility of xylan and hence enable adsorption in an aqueous environment. A high molecular weight grade, hence less water-soluble, adsorbed preferentially on the neutral surface while the adsorbed amount on a negatively charged surface was independent of the molecular weight, and hence, solubility. The adsorption of the oxidized xylans on a neutral cellulose surface resulted in an increase in the amount of water in the film while on the negatively charged cellulose the total amount of water decreased. The finding of synergy of two hygroscopic materials to decrease swelling in hydrophilic bio-polymer films demonstrates the oxidized macromolecule xylan as structurally functional component in emerging cellulose products.
Collapse
Affiliation(s)
- Chonnipa Palasingh
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Hassan Amer
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Tulln, Konrad-Lorenz Straße 24, 3430 Tulln, Austria; Department of Natural and Microbial Products Chemistry, National Research Centre, 33 AlBohous St., Dokki, Giza, Egypt
| | - Tiina Nypelö
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
49
|
Chemically sulfated arabinoxylans from Plantago ovata seed husk: Synthesis, characterization and antiviral activity. Carbohydr Polym 2021; 256:117555. [DOI: 10.1016/j.carbpol.2020.117555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
|
50
|
Deralia PK, du Poset AM, Lund A, Larsson A, Ström A, Westman G. Oxidation Level and Glycidyl Ether Structure Determine Thermal Processability and Thermomechanical Properties of Arabinoxylan-Derived Thermoplastics. ACS APPLIED BIO MATERIALS 2021; 4:3133-3144. [DOI: 10.1021/acsabm.0c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Parveen Kumar Deralia
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Aline Maire du Poset
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|