1
|
Jerca FA, Muntean C, Remaut K, Jerca VV, Raemdonck K, Hoogenboom R. Cationic amino-acid functionalized polymethacrylamide vectors for siRNA transfection based on modification of poly(2-isopropenyl-2-oxazoline). J Control Release 2023; 364:687-699. [PMID: 37935258 DOI: 10.1016/j.jconrel.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PiPOx) is a functional polymer showing great potential for the development of smart biomaterials. The straightforward synthesis and post-polymerization functionalization of PiPOx offers many opportunities for tailoring the properties of the polymer towards biomaterials. In this study we report for the first time PiPOx-based cationic charged polymethacrylamides with amino acid side chains that can complex siRNA and promote transfection in vitro. Therefore, PiPOx was fully modified via ring opening addition reactions with the carboxylic acid groups of a series of N-Boc-L-amino acids and their reaction kinetics were investigated. Based on the determined kinetic constants, another series of PiPOx-based copolymers with balanced hydrophilic/hydrophobic content of N-Boc-L-amino acids were obtained via one-pot modification reaction with two different N-Boc-L-amino acids. The N-Boc protected homopolymers and related copolymers were deprotected to obtain (co)polymers with the targeted side chain cationic charged units. The (co)polymers' structures were fully investigated via FT-IR and 1H NMR spectroscopy, size exclusion chromatography (SEC), and TGA-DSC-MS analysis. The polarimetry measurements revealed that the homopolymers retain their chiroptical properties after post-modification, and a sign inversion is noticed from (L) N-Boc-protected analogues to (D) for the TFA cationic charged homopolymers. Generally, cationically charged homopolymers with hydrophilic amino acids on the side chain showed efficient complexation of siRNA, but poor transfection while cationic copolymers having both tryptophan and valine or proline side chains revealed moderate siRNA binding, high transfection efficiency (> 90% of the cells) and potent gene silencing with IC50 values down to 5.5 nM. Particularly, these cationic copolymers showed higher gene silencing potency as compared to the commercial JetPRIME® reference, without reducing cell viability in the concentration range used for transfection, making this a very interesting system for in vitro siRNA transfection.
Collapse
Affiliation(s)
- Florica Adriana Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Concilio M, Garcia Maset R, Lemonche LP, Kontrimas V, Song J, Rajendrakumar SK, Harrison F, Becer CR, Perrier S. Mechanism of Action of Oxazoline-Based Antimicrobial Polymers Against Staphylococcus aureus: In Vivo Antimicrobial Activity Evaluation. Adv Healthc Mater 2023; 12:e2301961. [PMID: 37522292 PMCID: PMC11468764 DOI: 10.1002/adhm.202301961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/01/2023]
Abstract
Antimicrobial-resistant pathogens have reached alarming levels, becoming one of the most pressing global health issues. Hence, new treatments are necessary for the fight against antimicrobial resistance. Synthetic nanoengineered antimicrobial polymers (SNAPs) have emerged as a promising alternative to antimicrobial peptides, overcoming some of their limitations while keeping their key features. Herein, a library of amphiphilic oxazoline-based SNAPs using cationic ring-opening polymerization (CROP) is designed. Amphipathic compounds with 70% cationic content exhibit the highest activity against clinically relevant Staphylococcus aureus isolates, maintaining good biocompatibility in vitro and in vivo. The mechanism of action of the lead compounds against S. aureus is assessed using various microscopy techniques, indicating cell membrane disruption, while the cell wall remains unaffected. Furthermore, a potential interaction of the compounds with bacterial DNA is shown, with possible implications on bacterial division. Finally, one of the compounds exhibits high efficacy in vivo in an insect infection model.
Collapse
Affiliation(s)
| | - Ramón Garcia Maset
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | | | - Vito Kontrimas
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | - Ji‐Inn Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Freya Harrison
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - C. Remzi Becer
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| |
Collapse
|
3
|
Takano S, Miyashima Y, Fujii S, Sakurai K. Molecular Bottlebrushes for Immunostimulatory CpG ODN Delivery: Relationship among Cation Density, Complex Formation Ability, and Cytotoxicity. Biomacromolecules 2023; 24:1299-1309. [PMID: 36762890 DOI: 10.1021/acs.biomac.2c01348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Artificially designed short single-stranded DNA sequences containing unmethylated CG (CpG ODNs) are agonists for toll-like receptor 9 (TLR9); thus, they have great potential as vaccine adjuvants for cancer immunotherapy and preventing infectious diseases. To deliver effectively CpG ODNs into cells bearing TLR9, nanoparticle polyion complexes of cationic polymers that are able to ingest multiple CpG ODN molecules have been developed; however, their structures and synthesized polycations are hard to control and bioincompatible, respectively. To solve these issues, we designed cationic molecular bottlebrushes (CMBs) with branches that are made from copolymers of 2-methacryloyloxyethyl phosphorylcholine and 2-methacryloyloxyethyl trimethylammonium chloride. Several instrumental methods were carried out to determine the structure of a CMB and its complex with CpG ODNs. The complexation did not change the overall shape of the original CMB, and the bound CpG ODNs were captured by the outer layer of the CMB. The moderation of cations was important to reduce toxicity and improve secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yusuke Miyashima
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
4
|
Kim J, Beyer V, Becer CR. Poly(2-oxazoline) with Pendant Hydroxyl Groups via a Silyl Ether-Based Protecting Group. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jungyeon Kim
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Valentin Beyer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- IRF Life Sciences, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Mazrad ZAI, Lai M, Davis TP, Nicolazzo JA, Thurecht KJ, Leiske MN, Kempe K. Protected amine-functional initiators for the synthesis of α-amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d2py00649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Screening a series of protected amine cationic ring-opening polymerization initiators revealed the commercially available N-(3-bromopropyl)phthalimide as the most suitable to achieve defined polymers with high degree of amine functionalization.
Collapse
Affiliation(s)
- Zihnil A. I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - May Lai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Australia
| | - Meike N. Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Wang Y, Xiong X, Zhu Y, Song X, Li Q, Zhang S. A pH-Responsive Nanoplatform Based on Fluorescent Conjugated Polymer Dots for Imaging-Guided Multitherapeutics Delivery and Combination Cancer Therapy. ACS Biomater Sci Eng 2021; 8:161-169. [PMID: 34866394 DOI: 10.1021/acsbiomaterials.1c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For cancer treatment, nanocarriers were designed with cationic lipids and polymers to improve the cytosolic delivery efficiency of siRNA. Though the positively charged nanocarriers showed great potential for RNA therapy, it was inevitable to generate the potential cytotoxicity. We constructed a pH-responsive nanoplatform, which co-carried siRNA and anticancer drug (hydroxycamptothecine, HCPT), to integrate gene therapy and chemotherapy for combination cancer therapy. The fluorescent conjugated polymer nanoparticles (CPNPs) modified with cell-penetrating peptides were employed as cores to carry siRNA molecules (siRNA-CPNPs) and track the biodistribution of nanotherapeutics by virtue of fluorescence. Calcium phosphate (CaP) nanocoatings were deposited on the surface of siRNA-CPNPs, followed by loading with HCPT and aptamers targeting cancer cells to obtain a targeted and tumor acid-responsive biocompatible nanoplatform. After the uptake of cancer cells, the CaP nanocoatings were decomposed in the acidic endo/lysosomes to release HCPT, and the siRNA-CPNPs were exposed to facilitate the siRNA endo/lysosome escape and cytoplasm delivery. Results obtained from both in vitro and in vivo studies in tumor inhibition expressed that the combined therapy exhibited a better therapeutic efficacy than any monotherapy.
Collapse
Affiliation(s)
- Yilin Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi 276005, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Qiong Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
8
|
Leiske MN, Lai M, Amarasena T, Davis TP, Thurecht KJ, Kent SJ, Kempe K. Interactions of core cross-linked poly(2-oxazoline) and poly(2-oxazine) micelles with immune cells in human blood. Biomaterials 2021; 274:120843. [PMID: 33984635 DOI: 10.1016/j.biomaterials.2021.120843] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Water-soluble poly(cyclic imino ether)s (PCIEs) have emerged as promising biocompatible polymers for nanomedicine applications in recent years. Despite their generally accepted stealth properties, there has been no comprehensive evaluation of their interactions with primary immune cells in human blood. Here we present a library of core cross-linked micelles (CCMs) containing various PCIE shells. Well-defined high molar mass CCMs (Mn > 175 kDa, Ð < 1.2) of similar diameter (~20 nm) were synthesised using a cationic ring-opening polymerisation (CROP) - surfactant-free reversible addition-fragmentation chain-transfer (RAFT) emulsion polymerisation strategy. The stealth properties of the different PCIE CCMs were assessed employing a whole human blood assay simulating the complex blood environment. Cell association studies revealed lower associations of poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) CCMs with blood immune cells compared to the respective poly(2-oxazine) (POz) CCMs. Noteworthy, PMeOx CCMs outperformed all other reported CCMs, showing overall low associations and only negligible differences in the presence and absence of serum proteins. This study highlights the importance of investigating individual nanomaterials under physiologically relevant conditions and further strengthens the position of PMeOx as a highly promising stealth material for biomedical applications.
Collapse
Affiliation(s)
- Meike N Leiske
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - May Lai
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Thakshila Amarasena
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
9
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
10
|
Zhao T, Drain B, Yilmaz G, Becer CR. One-pot synthesis of amphiphilic multiblock poly(2-oxazoline)s via para-fluoro-thiol click reactions. Polym Chem 2021. [DOI: 10.1039/d1py00944c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A clickable initiator, pentafluoro benzyl bromide, has been investigated for the cationic ring opening polymerization of poly(2-oxazolines).
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
| | - Ben Drain
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
| |
Collapse
|
11
|
Leiske MN, Mahmoud AM, Warne NM, Goos JACM, Pascual S, Montembault V, Fontaine L, Davis TP, Whittaker MR, Kempe K. Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal Reactivity. Polym Chem 2020. [DOI: 10.1039/d0py00861c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular copolymer platform based on two oxazole derivatives is presented. Post-polymerisation modifications revealed the potential to selectively modify the individual side groups, providing access to functional copolymer libraries in the future.
Collapse
|
12
|
Hoelzer D, Leiske MN, Hartlieb M, Bus T, Pretzel D, Hoeppener S, Kempe K, Thierbach R, Schubert US. Tumor targeting with pH-responsive poly(2-oxazoline)-based nanogels for metronomic doxorubicin treatment. Oncotarget 2018; 9:22316-22331. [PMID: 29854280 PMCID: PMC5976466 DOI: 10.18632/oncotarget.24806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022] Open
Abstract
The synthesis of a new nanogel drug carrier system loaded with the anti-cancer drug doxorubicin (DOX) is presented. Poly(2-oxazoline) (POx) based nanogels from block copolymer micelles were cross-linked and covalently loaded with DOX using pH-sensitive Schiff' base chemistry. DOX loaded POx based nanogels showed a toxicity profile comparable to the free drug, while unloaded drug carriers showed no toxicity. Hemolytic activity and erythrocyte aggregation of the drug delivery system was found to be low and cellular uptake was investigated by flow cytometry and fluorescence microscopy. While the amount of internalized drug was enhanced when incorporated into a nanogel, the release of the drug into the nucleus was delayed. For in vivo investigations the nanogel drug delivery system was combined with a metronomic treatment of DOX. Low doses of free DOX were compared to equivalent DOX loaded nanogels in a xenograft mouse model. Treatment with POx based nanogels revealed a significant tumor growth inhibition and increase in survival time, while pure DOX alone had no effect on tumor progression. The biodistribution was investigated by microscopy of organs of mice and revealed a predominant localization of DOX within tumorous tissue. Thus, the POx based nanogel system revealed a therapeutic efficiency despite the low DOX concentrations and could be a promising strategy to control tumor growth with fewer side effects.
Collapse
Affiliation(s)
- Doerte Hoelzer
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Meike N. Leiske
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Current address: Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Tanja Bus
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Current address: Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - René Thierbach
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
13
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|