1
|
King JA, Zhang X, Ries ME. The Formation of All-Silk Composites and Time-Temperature Superposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103804. [PMID: 37241431 DOI: 10.3390/ma16103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Extensive studies have been conducted on utilising natural fibres as reinforcement in composite production. All-polymer composites have attracted much attention because of their high strength, enhanced interfacial bonding and recyclability. Silks, as a group of natural animal fibres, possess superior properties, including biocompatibility, tunability and biodegradability. However, few review articles are found on all-silk composites, and they often lack comments on the tailoring of properties through controlling the volume fraction of the matrix. To better understand the fundamental basis of the formation of silk-based composites, this review will discuss the structure and properties of silk-based composites with a focus on employing the time-temperature superposition principle to reveal the corresponding kinetic requirements of the formation process. Additionally, a variety of applications derived from silk-based composites will be explored. The benefits and constraints of each application will be presented and discussed. This review paper will provide a useful overview of research on silk-based biomaterials.
Collapse
Affiliation(s)
- James A King
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xin Zhang
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Morales A, Seelam S, Love SA, O'Malley SM, Hu X, Salas-de la Cruz D. Reduced graphene oxide influences morphology and thermal properties of silk/cellulose biocomposites. Int J Biol Macromol 2023; 236:123971. [PMID: 36898467 DOI: 10.1016/j.ijbiomac.2023.123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
In recent decades, research into biomaterials such as silk or cellulose has rapidly expanded due to their abundance, low cost, and tunable morphological as well as physicochemical properties. Cellulose is appealing due to its crystalline and amorphous polymorphs while silk is attractive due to its tunable secondary structure formations which is made up of flexible protein fibers. When these two biomacromolecules are mixed, their properties can be modified by changing their material composition and fabrication methodology, e.g., solvent type, coagulation agent, and temperature. Reduced graphene oxide (rGO) can be used to increase molecular interactions and stabilization of natural polymers. In this study, we sought to determine how small amounts of rGO affect the carbohydrate crystallinity and protein secondary structure formation as well as physicochemical properties and how they affect overall ionic conductivity of cellulose-silk composites. Properties of fabricated silk and cellulose composites with and without rGO were investigated using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, X-Ray Scattering, Differential Scanning Calorimetry, Dielectric Relaxation Spectroscopy, and Thermogravimetric Analysis. Our results show that addition of rGO influenced morphological and thermal properties of cellulose-silk biocomposites, specifically through cellulose crystallinity and silk β-sheet content which further impacted ionic conductivity.
Collapse
Affiliation(s)
- Abneris Morales
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America
| | - Sneha Seelam
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America
| | - Stacy A Love
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America
| | - Sean M O'Malley
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America; Department of Physics, Rutgers University, Camden, NJ, United States of America
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ, United States of America; Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| | - David Salas-de la Cruz
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America; Department of Chemistry, Rutgers University, Camden, NJ, United States of America.
| |
Collapse
|
3
|
Recent Research Progress of Ionic Liquid Dissolving Silks for Biomedicine and Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23158706. [PMID: 35955840 PMCID: PMC9369158 DOI: 10.3390/ijms23158706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids (ILs) show a bright application prospect in the field of biomedicine and energy materials due to their unique recyclable, modifiability, structure of cation and anion adjustability, as well as excellent physical and chemical properties. Dissolving silk fibroin (SF), from different species silkworm cocoons, with ILs is considered an effective new way to obtain biomaterials with highly enhanced/tailored properties, which can significantly overcome the shortcomings of traditional preparation methods, such as the cumbersome, time-consuming and the organic toxicity caused by manufacture. In this paper, the basic structure and properties of SF and the preparation methods of traditional regenerated SF solution are first introduced. Then, the dissolving mechanism and main influencing factors of ILs for SF are expounded, and the fabrication methods, material structure and properties of SF blending with natural biological protein, inorganic matter, synthetic polymer, carbon nanotube and graphene oxide in the ILs solution system are introduced. Additionally, our work summarizes the biomedicine and tissue engineering applications of silk-based materials dissolved through various ILs. Finally, according to the deficiency of ILs for dissolving SF at a high melting point and expensive cost, their further study and future development trend are prospected.
Collapse
|
4
|
Deng Q, Wang F, Gough CR, Hu X. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Int J Biol Macromol 2022; 197:55-67. [PMID: 34952094 DOI: 10.1016/j.ijbiomac.2021.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022]
Abstract
One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure and physicochemical properties is by creating composite materials that combine synthetic polymers with natural proteins using ionic liquids. In this study, biodegradable poly(d,l-lactic acid) (PDLLA) was blended with silk fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methylimidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible polymer blend characteristics. By increasing the SF content in the composites, the amounts of β-sheets in the films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and protein for a wide variety of biomedical and green material applications.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Christopher R Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
5
|
Ma N, Wan Y, Zhou L, Wang L, Qian W. Insights into the interaction between chitosan and pepsin by optical interferometry. Int J Biol Macromol 2022; 203:563-571. [PMID: 35120935 DOI: 10.1016/j.ijbiomac.2022.01.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Polysaccharides and proteins have attracted increasing interest in the fields of biomedicine and green chemical as biocomposites due to their inherent versatility. Here, we used silica colloidal crystal (SCC) films combined with an ordered porous layer interferometry (OPLI) method to investigate the interaction between chitosan and pepsin at different concentrations and pH values in real time. Zeta potential was combined with attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform infrared microscopy (FTIR microscopy) to illustrate the interaction mechanism further. The results showed that the variation and slope of the optical thickness (OT) caused by the Fabry-Perot fringes represent the degree and process of interaction. The protonation of chitosan and the net charge carried by pepsin caused various degrees of electrostatic attraction under different pH values. Meanwhile, the rate and degree of hydrolysis were positively correlated with pepsin concentration. This work results provide a theoretical basis for designing novel composites based on the development of polysaccharides and proteins.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Love SA, Hu X, Cruz DSDL. Controlling the structure and properties of semi-crystalline cellulose/silk-fibroin biocomposites by ionic liquid type and hydrogen peroxide concentration. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Application of Quaternary Ammonium Compounds as Compatibilizers for Polymer Blends and Polymer Composites—A Concise Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A wide variety of quaternary ammonium compounds (QACs) have escalated the attraction of researchers to explore the application of QACs. The compounds have frequently been synthesized through alkylation or quaternization of tertiary amines with alkyl halides. Recently, QACs have been applied to compatibilize polymer blends and polymer composites in improving their thermo-mechanical properties. This concise review concentrates on the application of two types of QACs as compatibilizers for polymer blends and polymer composites. The types of QACs that were effectively applied in the blends and composites are quaternary ammonium surfactants (QASs) and quaternary ammonium ionic liquids (QAILs). They have been chosen for the discussion because of their unique chemical structure which can interact with the polymer blend and composite components. The influence of QASs and QAILs on the thermo-mechanical properties of the polymer blends and polymer composites is also described. This review could be helpful for the polymer blend and polymer composite researchers and induce more novel ideas in this research area.
Collapse
|
8
|
Shamsuri AA, Abdan K, Kaneko T. A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids. Molecules 2021; 26:E216. [PMID: 33406627 PMCID: PMC7796285 DOI: 10.3390/molecules26010216] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
An enhancement of environmental concern lately has improved the awareness of researchers in employing eco-friendly solvents for processing biopolymers. Recently, ionic liquids have been utilized to prepare biopolymer blends as they are non-volatile and recyclable. Biopolymers such as cellulose, chitin, chitosan, keratin, lignin, silk, starch, and zein are widely used for the preparation of biopolymer blends via dissolution in ionic liquids, followed by coagulation procedure. In this concise review, three types of ionic liquids based on imidazolium cations combined with different counter anions that are frequently utilized to prepare biopolymer blends are described. Moreover, three types of biopolymer blends that are prepared in ionic liquids were classified, specifically polysaccharide/polysaccharide blends, polysaccharide/polypeptide blends, and polysaccharide/bioplastic blends. The physicochemical properties of biopolymer blends prepared in different imidazolium-based ionic liquids are also concisely reviewed. This paper may assist the researchers in the polymer blend area and generate fresh ideas for future research.
Collapse
Affiliation(s)
- Ahmad Adlie Shamsuri
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Khalina Abdan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Tatsuo Kaneko
- Energy and Environment Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi District 923-1292, Ishikawa, Japan;
| |
Collapse
|
9
|
Cellulose/silk fibroin assisted calcium phosphate growth: Novel biocomposite for dye adsorption. Int J Biol Macromol 2020; 165:1970-1977. [DOI: 10.1016/j.ijbiomac.2020.10.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/09/2023]
|
10
|
Shang Y, Wu C, Hang C, Lu H, Wang Q. Hofmeister-Effect-Guided Ionohydrogel Design as Printable Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000189. [PMID: 32567056 DOI: 10.1002/adma.202000189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/02/2020] [Indexed: 05/26/2023]
Abstract
Bioelectronic platforms convert biological signals into electrical signals by utilizing biocatalysts that provide tools to monitor the activity of cells and tissues. Traditional conducting materials such as solid conductors and conducting polymers are confronted with a great challenge in sophisticated production processes and mismatch at biological tissues-machine interfaces. Furthermore, the biocatalyst, the key functional component in the electron-transfer reaction for bio-signal detection denatures easily in an ionic conductive solution. Herein, a bionic strategy is elaborately developed to synthesize an ionohydrogel bioelectronic platform that possesses extracellular-matrix-like habitat by employing hydrated ionic liquids (HILs) as ionic solvent and bioprotectant. This strategy realizes an integration of ionic and enzymatic electronic circuits and minimization of the disparities between tissues and artificial machines. The Hofmeister effect of HILs on enzyme proteins and polymer chains ensures the high bioactivity of the enzymes and greatly improves the mechanical properties of the ionohydrogels. Moreover, hydrogen bonds formed by ILs, water, and polymer chains greatly improve the water-retention of the ionohydrogel and give it more practical significance. Consequently, the promising ionohydrogel is partly printed and fabricated into wearable devices as a pain-free humoral components monitor and a wireless motion-sensor.
Collapse
Affiliation(s)
- Yinghui Shang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Chengzhou Hang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent EI Electronics & Systems, School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Hongliang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent EI Electronics & Systems, School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
11
|
The Impact of Composition and Morphology on Ionic Conductivity of Silk/Cellulose Bio-Composites Fabricated from Ionic Liquid and Varying Percentages of Coagulation Agents. Int J Mol Sci 2020; 21:ijms21134695. [PMID: 32630158 PMCID: PMC7370005 DOI: 10.3390/ijms21134695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Blended biocomposites created from the electrostatic and hydrophobic interactions between polysaccharides and structural proteins exhibit useful and unique properties. However, engineering these biopolymers into applicable forms is challenging due to the coupling of the material’s physicochemical properties to its morphology, and the undertaking that comes with controlling this. In this particular study, numerous properties of the Bombyx mori silk and microcrystalline cellulose biocomposites blended using ionic liquid and regenerated with various coagulation agents were investigated. Specifically, the relationship between the composition of polysaccharide-protein bio-electrolyte membranes and the resulting morphology and ionic conductivity is explored using numerous characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, atomic force microscopy (AFM) based nanoindentation, and dielectric relaxation spectroscopy (DRS). The results revealed that when silk is the dominating component in the biocomposite, the ionic conductivity is higher, which also correlates with higher β-sheet content. However, when cellulose becomes the dominating component in the biocomposite, this relationship is not observed; instead, cellulose semicrystallinity and mechanical properties dominate the ionic conduction.
Collapse
|
12
|
Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Bealer EJ, Onissema-Karimu S, Rivera-Galletti A, Francis M, Wilkowski J, Salas-de la Cruz D, Hu X. Protein-Polysaccharide Composite Materials: Fabrication and Applications. Polymers (Basel) 2020; 12:E464. [PMID: 32079322 PMCID: PMC7077675 DOI: 10.3390/polym12020464] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Protein-polysaccharide composites have been known to show a wide range of applications in biomedical and green chemical fields. These composites have been fabricated into a variety of forms, such as films, fibers, particles, and gels, dependent upon their specific applications. Post treatments of these composites, such as enhancing chemical and physical changes, have been shown to favorably alter their structure and properties, allowing for specificity of medical treatments. Protein-polysaccharide composite materials introduce many opportunities to improve biological functions and contemporary technological functions. Current applications involving the replication of artificial tissues in tissue regeneration, wound therapy, effective drug delivery systems, and food colloids have benefited from protein-polysaccharide composite materials. Although there is limited research on the development of protein-polysaccharide composites, studies have proven their effectiveness and advantages amongst multiple fields. This review aims to provide insight on the elements of protein-polysaccharide complexes, how they are formed, and how they can be applied in modern material science and engineering.
Collapse
Affiliation(s)
- Elizabeth J. Bealer
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Shola Onissema-Karimu
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Maura Francis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Jason Wilkowski
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - David Salas-de la Cruz
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA;
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
14
|
Love SA, Popov E, Rybacki K, Hu X, Salas-de la Cruz D. Facile treatment to fine-tune cellulose crystals in cellulose-silk biocomposites through hydrogen peroxide. Int J Biol Macromol 2020; 147:569-575. [PMID: 31931064 DOI: 10.1016/j.ijbiomac.2020.01.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
The modulation of structural fibrous protein and polysaccharide biopolymers for the design of biomaterials is still relatively challenging due to the non-trivial nature of the transformation from a biopolymer's native state to a more usable form. To gain insight into the nature of the molecular interaction between silk and cellulose chains, we characterized the structural, thermal and morphological properties of silk-cellulose biocomposites regenerated from the ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc), as a function of increasing coagulation agent concentrations. We found that the cellulose crystallinity and crystal size are dependent on the coagulation agent, hydrogen peroxide solution. The interpretation of our results suggests that the selection of a proper coagulator is a critical step for controlling the physicochemical properties of protein-polysaccharide biocomposite materials.
Collapse
Affiliation(s)
- Stacy A Love
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America.
| | - Elizabeth Popov
- Department of Health Sciences, Rutgers University, Camden, NJ, United States of America.
| | - Karleena Rybacki
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America.
| | - Xiao Hu
- Department of Physics & Astronomy, Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America.
| | - David Salas-de la Cruz
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America; Department of Chemistry, Rutgers University, Camden, NJ, United States of America.
| |
Collapse
|
15
|
Blessing B, Trout C, Morales A, Rybacki K, Love SA, Lamoureux G, O'Malley SM, Hu X, Salas‐de la Cruz D. Morphology and ionic conductivity relationship in silk/cellulose biocomposites. POLYM INT 2019. [DOI: 10.1002/pi.5860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Cory Trout
- Computational and Integrative BiologyRutgers University Camden NJ USA
| | | | - Karleena Rybacki
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Stacy A Love
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Guillaume Lamoureux
- Department of ChemistryRutgers University Camden NJ USA
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Sean M O'Malley
- Computational and Integrative BiologyRutgers University Camden NJ USA
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| | - Xiao Hu
- Department of Physics and Astronomy, Department of Biomedical EngineeringRowan University Glassboro NJ USA
| | - David Salas‐de la Cruz
- Department of ChemistryRutgers University Camden NJ USA
- Center for Computational and Integrative Biology, Rutgers University Camden NJ USA
| |
Collapse
|
16
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
17
|
The Role of Reduced Graphene Oxide toward the Self-Assembly of Lignin-Based Biocomposites Fabricated from Ionic Liquids. Int J Mol Sci 2018; 19:ijms19113518. [PMID: 30413099 PMCID: PMC6274873 DOI: 10.3390/ijms19113518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
Lignin’s immiscibility with most polymers along with its unknown association behaviors are major factors that contribute to its disposal and processability for the production of materials. To fully utilize lignin, an improved understanding of its interaction with other materials is needed. In this study, we investigate the morphological and physicochemical properties upon the addition of reduced graphene oxide (rGO) as a function of material composition in a tertiary system comprised of lignin, cellulose and xylan. The main motivation for this work is to understand how the lignin molecule associates and behaves in the presence of other natural macromolecules, as well as with the addition of reduced graphene oxide. The fabricated biocomposites with and without rGO were investigated using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR), Scanning Electron Microscope (SEM) techniques, Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). The results demonstrated that the regenerated films’ structural, morphological and thermal character changed as a function of lignin-xylan concentration and upon the addition of rGO. We also observed a dramatic change in the glass transition temperature and topography. Final analysis showed that the addition of rGO prevented the macromolecules to self-assemble through a reduction of π-π aggregations and changes in the cellulose crystallinity.
Collapse
|