1
|
Yang C, Duan G, Zhang C, Huang Y, Li S, Jiang S. Preparation and applications of magnetic nanocellulose composites: A review. Carbohydr Polym 2025; 354:123317. [PMID: 39978902 DOI: 10.1016/j.carbpol.2025.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Cellulose is the most abundant biomass material in the world. Magnetic nanoparticles can be used as reinforcing materials to give cellulose more functions due to their unique magnetism. According to the dispersion stability of nanocellulose, magnetic nanocellulose is divided into homogeneous preparation and heterogeneous preparation. In addition, the directional arrangement of nanocellulose by external magnetic field is also a way of cellulose functionalization. The current preparation of magnetic nanocellulose is mainly based on heterogeneous preparation. Magnetic nanofiber cellulose has great application potential in the field of biomedicine and sewage purification due to its special magnetic properties. It can also be applied to sensors, food packaging and other fields. In this paper, the preparation methods of magnetic nanocellulose and its physical magnetism are introduced. Then, the application of magnetic nanocellulose in different fields is reviewed. Finally, the current challenges of magnetic nanocellulose are summarized and the future development trend is prospected.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Wahba MI. Fabrication of chia gum based covalent immobilizers. Int J Biol Macromol 2025; 304:140852. [PMID: 39933671 DOI: 10.1016/j.ijbiomac.2025.140852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Chia gum (CG) films were processed with polyethylene-imine (PEI) and glutaraldehyde (GA) in order to in-solubilize them and transform them into covalent immobilizers. These immobilizers were exploited to immobilize protease (PR) and β-D-galactosidase (β-GAL). Accordingly, the GA/PEI processing was individually honed for both enzymes via Box-Behnken Design. In case of β-GAL, it was optimal to process the CG with 5.43 % PEI at pH 8.32 followed by 6.02 % GA. On the other hand, optimal PR immobilizers were processed with 1.5 % PEI at pH 9.52 followed by 10 % GA solution. The proficiency of the β-GAL and PR immobilizers were then compared with respect to their granted operational stabilities. The immobilized β-GAL (iβ-GAL) presented much enhanced operational stability as it preserved 93.29 % of its inceptive activity during its 14th run. Accordingly, the GA/PEI/CG β-GAL immobilizers were further inspected via FTIR, EDX, and SEM. The iβ-GAL pH and activity profiles were also inspected and compared to those of its free cognate. Moreover, iβ-GAL exhibited enhanced thermal stability where it presented larger t1/2, D-values, and ΔG than did its free cognate. The iβ-GAL also presented enhanced storage, solvent and heavy-metals stabilities. Finally, the iβ-GAL successfully degraded lactose in whey permeate for 6 consecutive 24 h cycles.
Collapse
Affiliation(s)
- Marwa I Wahba
- Department of Chemistry of Natural and Microbial Products, National Research Centre, El-Behooth St., Dokki, Giza, Egypt; Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, El-Behooth St., Dokki, Giza, Egypt.
| |
Collapse
|
3
|
Spagnuolo L, Micheli L, Dufresne A, Beneventi D, Operamolla A. Covalent Lysozyme Immobilization on Enzymatic Cellulose Nanocrystals. Chemistry 2024; 30:e202402171. [PMID: 39140897 DOI: 10.1002/chem.202402171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Nanostructured materials represent promising substrates for biocatalyst immobilization and activation. Cellulose nanocrystals (CNCs), accessible from waste and/or renewable sources, are sustainable and biodegradable, show high specific surface area for anchoring a high number of enzymatic units, and high thermal and mechanical stability. In this work, we present a holistic enzyme-based approach to functional antibacterial materials by bioconjugation between the lysozyme from chicken egg white and enzymatic cellulose nanocrystals. The neutral CNCs were prepared by endoglucanase hydrolysis from Avicel. We explore the covalent immobilization of lysozyme on enzymatic CNCs and on their TEMPO oxidized derivatives (TO-CNCs), comparing immobilization yields, material properties, and enzymatic activities. The materials were characterized by X-ray diffractometry (XRD), attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FTIR), bicinchoninic acid (BCA) assay, field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS). We demonstrate the higher overall efficiency of the immobilization process carried out on TO-CNCs, based on the success of covalent bonding and on the stability of the isolated bioconjugates.
Collapse
Affiliation(s)
- Laura Spagnuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi 13, I-56124, Pisa, Italy
- Interuniversity Consortium of Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Laura Micheli
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica, 00133, Roma, Italy
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000, Grenoble, France
| | - Davide Beneventi
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000, Grenoble, France
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi 13, I-56124, Pisa, Italy
- Interuniversity Consortium of Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, I-70126, Bari, Italy
| |
Collapse
|
4
|
Wahba MI. Grafted calcium pectinate-whey protein isolate covalent immobilizers: Optimization, kinetics, thermodynamics, and application. J Biotechnol 2024; 388:35-48. [PMID: 38641136 DOI: 10.1016/j.jbiotec.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Whey protein isolate (WPI) was incorporated within calcium pectinate (CPT) beads in order to boost their anionic qualities and meliorate their glutaraldehyde (GA)-polyethyleneimine (PEI) grafting process. The Box-Behnken Design (BBD) verified that WPI inclusion significantly raised the GA-PEI-CPT-WPI beads immobilized β-D-galactosidase (iβ-GLD) activity. The BBD also revealed the optimal settings for WPI concentration, PEI pH, PEI concentration, and GA concentration, which were 2.91 %, 10.8, 3.5 %, and 2.24 %, respectively. The GA-PEI-CPT-WPI beads grafting process was scrutinized via FTIR, EDX, and SEM. The optimal GA-PEI-CPT-WPI immobilizers provided fine β-GLD immobilization efficiencies, which reached up to 65.28 %. The free and GA-PEI-CPT-WPI iβ-GLDs pH and temperature profiles were scrutinized. It was also unveiled that the thermal stability of the iβ-GLD surpassed that of its free compeer as it provided lesser kd and ΔS values and larger t1/2, D-values, Ed, ΔH, and ΔG values. Furthermore, the iβ-GLD provided 92.00±3.39 % activity after 42 storage days, which denoted its fine storage stability. The iβ-GLD short duration (15 min) operational stability was also inspected, and 82.70±0.78 % activity was provided during the fifteenth degradation run. Moreover, the iβ-GLD long duration (24 h) operational stability was inspected while degrading the lactose of buffered lactose solution (BLS) and cheese whey (CW). It was unveiled that 81.86±0.96 % and 73.58±2.24 % of the initial glucose were detected during the sixth degradation runs, respectively.
Collapse
Affiliation(s)
- Marwa I Wahba
- Department of Chemistry of Natural and Microbial Products, National Research Centre, El-Behooth St., Dokki, Giza, Egypt; Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, El-Behooth St., Dokki, Giza, Egypt.
| |
Collapse
|
5
|
Gennari A, Simon R, Renard G, Chies JM, Volpato G, Volken de Souza CF. Lactose hydrolysis in packed-and fluidized-bed reactors using a recombinant β-galactosidase immobilized on magnetic core-shell capsules. Bioprocess Biosyst Eng 2024; 47:263-273. [PMID: 38156992 DOI: 10.1007/s00449-023-02960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The objective of this study was to develop a bioprocess for lactose hydrolysis in diverse dairy matrices, specifically skim milk and cheese whey, utilizing column reactors employing a core-shell enzymatic system featuring β-galactosidase fused to a Cellulose Binding Domain (CBD) tag (β-galactosidase-CBD). The effectiveness of reactor configurations, including ball columns and toothed columns operating in packed and fluidized-bed modes, was evaluated for catalyzing lactose hydrolysis in both skim milk and cheese whey. In a closed system, these reactors achieved lactose hydrolysis rates of approximately 50% within 5 h under all evaluated conditions. Considering the scale of the bioprocess, the developed enzymatic system was capable of continuously hydrolyzing 9.6 L of skim milk while maintaining relative hydrolysis levels of approximately 50%. The biocatalyst, created by immobilizing β-galactosidase-CBD on magnetic core-shell capsules, exhibited exceptional operational stability, and the proposed bioprocess employing these column reactors showcases the potential for scalability.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade Do Vale Do Taquari - Univates, Av. Avelino Talini, Lajeado, RS, 171, ZC 95914-014, Brazil
- Programa de Pós-Graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade Do Vale Do Taquari - Univates, Av. Avelino Talini, Lajeado, RS, 171, ZC 95914-014, Brazil
| | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio Grande Do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade Do Vale Do Taquari - Univates, Av. Avelino Talini, Lajeado, RS, 171, ZC 95914-014, Brazil.
- Programa de Pós-Graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
6
|
Gennari A, Simon R, Benvenutti EV, Nicolodi S, Renard G, Chies JM, Volpato G, Volken de Souza CF. Magnetic core-shell cellulose system for the oriented immobilization of a recombinant β-galactosidase with a protein tag. Int J Biol Macromol 2024; 256:128418. [PMID: 38029902 DOI: 10.1016/j.ijbiomac.2023.128418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The objective of this study was to immobilize a recombinant β-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for β-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization. The inhibitory effect of galactose decreased in the enzyme reactions catalyzed by CS@Gal, and Mg2+ increased the immobilized enzyme activity by 40 % in the magnetic CS cellulose system. The relative enzyme activity of the CS@Gal was 20 % higher than that of the soluble enzyme activity after 20 min at 50 °C. The CS support and CS@Gal capsules exhibited an average size of 8 ± 1 mm, with the structure of the shell (alginate-pectin-cellulose) enveloping and isolating the magnetic core. The immobilized β-galactosidase-CBD within the magnetic CS cellulose system retained ∼80 % of its capacity to hydrolyze lactose from skim milk after 10 reuse cycles. This study unveils a novel and promising support for the oriented immobilization of recombinant β-galactosidase using a magnetic CS system and a CBD tag. This support facilitates β-galactosidase reuse and efficient separation, consequently enhancing the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Sabrina Nicolodi
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
7
|
Wahba MI. Glutaraldehyde-copper gelled chitosan beads: Characterization and utilization as covalent immobilizers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
9
|
Duan F, Sun T, Zhang J, Wang K, Wen Y, Lu L. Recent innovations in immobilization of β-galactosidases for industrial and therapeutic applications. Biotechnol Adv 2022; 61:108053. [DOI: 10.1016/j.biotechadv.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
10
|
Anizadeh MR, Torabi M, Zolfigol MA, Yarie M. Catalytic application Fe3O4@SiO2@(CH2)3-urea-dithiocarbamic acid for the synthesis of triazole-linked pyridone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Gennari A, Simon R, Sperotto NDDM, Bizarro CV, Basso LA, Machado P, Benvenutti EV, Renard G, Chies JM, Volpato G, Volken de Souza CF. Application of cellulosic materials as supports for single-step purification and immobilization of a recombinant β-galactosidase via cellulose-binding domain. Int J Biol Macromol 2022; 199:307-317. [PMID: 35007635 DOI: 10.1016/j.ijbiomac.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
This study aimed to develop single-step purification and immobilization processes on cellulosic supports of β-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/gsupport, expressed activity values reached 106.88 (microcrystalline cellulose), 115.03 (alkaline nanocellulose), and 108.47 IU/g (acid nanocellulose). The derivatives produced were less sensitive to the presence of galactose in comparison with the soluble purified enzyme. Among the cations assessed (Na+, K+, Mg2+, and Ca2+), magnesium provided the highest increase in the enzymatic activity of β-galactosidases immobilized on cellulosic supports. Supports and derivatives showed no cytotoxic effect on the investigated cell cultures (HepG2 and Vero). Derivatives showed high operational stability in the hydrolysis of milk lactose and retained from 53 to 64% of their hydrolysis capacity after 40 reuse cycles. This study obtained biocatalyzers with promising characteristics for application in the food industry. Biocatalyzers were obtained through a low-cost one-step sustainable bioprocess of purification and immobilization of a β-galactosidase on cellulose via CBD.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Brazil; Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Brazil
| | | | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gaby Renard
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
12
|
Carli S, Salgado JCS, Meleiro LP, Ward RJ. Covalent Immobilization of Chondrostereum purpureum Endopolygalacturonase on Ferromagnetic Nanoparticles: Catalytic Properties and Biotechnological Application. Appl Biochem Biotechnol 2022; 194:848-861. [PMID: 34553326 DOI: 10.1007/s12010-021-03688-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Pectinases are widely used in a variety of industrial processes. However, their application is limited by low catalytic processivity, reduced stability, high cost, and poor re-use compatibility. These drawbacks may be overcome by enzyme immobilization with ferromagnetic nanoparticles, which are easily recovered by a magnetic field. In this work, an endopolygalacturonase from Chondrostereum purpureum (EndoPGCp) expressed in Pichia pastoris was immobilized on glutaraldehyde-activated chitosan ferromagnetic nanoparticles (EndoPGCp-MNP) and used to supplement a commercial enzyme cocktail. No significant differences in biochemical and kinetic properties were observed between EndoPGCp-MNP and EndoPGCp, although the EndoPGCp-MNP showed slightly increased thermostability. Cocktail supplementation with EndoPGCp-MNP increased reducing sugar release from orange wastes by 1.8-fold and showed a synergistic effect as compared to the free enzyme. Furthermore, EndoPGCp-MNP retained 65% of the initial activity after 7 cycles of re-use. These properties suggest that EndoPGCp-MNP may find applications in the processing of pectin-rich agroindustrial residues.
Collapse
Affiliation(s)
- Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Jose Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil.
| |
Collapse
|
13
|
Gennari A, Simon R, Sperotto NDDM, Bizarro CV, Basso LA, Machado P, Benvenutti EV, Da Cas Viegas A, Nicolodi S, Renard G, Chies JM, Volpato G, Volken de Souza CF. One-step purification of a recombinant beta-galactosidase using magnetic cellulose as a support: Rapid immobilization and high thermal stability. BIORESOURCE TECHNOLOGY 2022; 345:126497. [PMID: 34883192 DOI: 10.1016/j.biortech.2021.126497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
For the first time, this work reported the one-step purification and targeted immobilization process of a β-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after β-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between β-galactosidase and the substrate 1.2 × higher in the lactose hydrolysis of milk. β-Galactosidase-CBD's oriented immobilization process on supports increased the thermal stability of the immobilized enzyme by up to 7 × . After 15 cycles of reuse, both enzyme preparations showed a relative hydrolysis percentage of 50% of lactose in milk. The oriented immobilization process developed for purifying recombinant proteins containing the CBD tag enabled the execution of both steps simultaneously and quickly and the obtention of β-galactosidases with promising catalytic characteristics for application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Nathalia Denise de Moura Sperotto
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Sabrina Nicolodi
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
14
|
de Albuquerque TL, de Sousa M, Gomes E Silva NC, Girão Neto CAC, Gonçalves LRB, Fernandez-Lafuente R, Rocha MVP. β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. Int J Biol Macromol 2021; 191:881-898. [PMID: 34571129 DOI: 10.1016/j.ijbiomac.2021.09.133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023]
Abstract
A review on the enzyme β-galactosidase from Kluyveromyces lactis is presented, from the perspective of its structure and mechanisms of action, the main catalyzed reactions, the key factors influencing its activity, and selectivity, as well as the main techniques used for improving the biocatalyst functionality. Particular attention was given to the discussion of hydrolysis, transglycosylation, and galactosylation reactions, which are commonly mediated by this enzyme. In addition, the products generated from these processes were highlighted. Finally, biocatalyst improvement techniques are also discussed, such as enzyme immobilization and protein engineering. On these topics, the most recent immobilization strategies are presented, emphasizing processes that not only allow the recovery of the biocatalyst but also deliver enzymes that show better resistance to high temperatures, chemicals, and inhibitors. In addition, genetic engineering techniques to improve the catalytic properties of the β-galactosidases were reported. This review gathers information to allow the development of biocatalysts based on the β-galactosidase enzyme from K. lactis, aiming to improve existing bioprocesses or develop new ones.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Marylane de Sousa
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Natan Câmara Gomes E Silva
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Carlos Alberto Chaves Girão Neto
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Luciana Rocha Barros Gonçalves
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil
| | - Roberto Fernandez-Lafuente
- Instituto de Catálisis y Petroleoquímica - CSIC, Campus of excellence UAM-CSIC, Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Maria Valderez Ponte Rocha
- Federal University of Ceará, Technology Center, Chemical Engineering Department, Campus do Pici, Bloco 709, 60 455 - 760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
15
|
Matveeva VG, Bronstein LM. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. NANOMATERIALS 2021; 11:nano11092257. [PMID: 34578573 PMCID: PMC8469579 DOI: 10.3390/nano11092257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
In this short review (Perspective), we identify key features of the performance of biocatalysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles (NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic supports is their easy separation due to the magnetic attraction between magnetic NPs and an external magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers, silica, or some other protective layer. However, in those cases when iron oxide NPs are in close proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy of the performance due to the enzyme-like properties shown in iron oxides. Another important parameter which is discussed in this review is the magnetic support porosity, especially in hierarchical porous supports. In the case of comparatively large pores, which can freely accommodate enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as surface-modifying agents or special enzyme reactor designs can be also influential in the performance of magnetic NP based immobilized enzymes.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St, 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
16
|
de Andrade BC, Gennari A, Renard G, Nervis BDR, Benvenutti EV, Costa TMH, Nicolodi S, da Silveira NP, Chies JM, Volpato G, Volken de Souza CF. Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model. Int J Biol Macromol 2021; 184:159-169. [PMID: 34126150 DOI: 10.1016/j.ijbiomac.2021.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (Fe3O4-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using β-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed. The load of 600 Uenzyme/gsupport showed the highest recovered activity value (~50%). After the immobilization process, the recombinant β-galactosidase (HisGal) showed increased substrate affinity and greater thermal stability (~50×) compared to the free enzyme. The immobilized β-galactosidase was employed in batch processes for lactose hydrolysis of skim milk and cheese whey, resulting in hydrolysis rates higher than 50% after 15 cycles of reuse. The support used was obtained in the present study without modifying chemical agents. The support easily recovered from the reaction medium due to its magnetic characteristics. The iron nanoparticles functionalized with histidine and nickel were efficient in the oriented immobilization of the recombinant β-galactosidase, showing its potential application in other high-molecular-weight enzymes.
Collapse
Affiliation(s)
- Bruna Coelho de Andrade
- Food Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Adriano Gennari
- Food Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Gaby Renard
- National Institute of Science and Technology in Tuberculosis, Research Center for Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Sabrina Nicolodi
- Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Giandra Volpato
- Biotechnology course, Federal Institute of Education, Science, and Technology of Rio Grande do Sul - IFRS, Porto Alegre Campus, Porto Alegre, RS, Brazil
| | | |
Collapse
|
17
|
Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, Rizwan M, Senthilnithy R, Mahanama KRR, Tripathy A, Azman MF. Cellulose supported magnetic nanohybrids: Synthesis, physicomagnetic properties and biomedical applications-A review. Carbohydr Polym 2021; 267:118136. [PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
Collapse
Affiliation(s)
| | - Khadija Munawar
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ching Yern Chee
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Chennai, Tamil Nadu, India.
| | - Ahmed Halilu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hazlee Azil Illias
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, 10250 Nawala, Nugegoda, Sri Lanka
| | | | - Ashis Tripathy
- Center for MicroElectroMechanics Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Mohd Fahmi Azman
- Physics Division, Centre for foundation studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Gennari A, Simon R, de Andrade BC, Saraiva Macedo Timmers LF, Milani Martins VL, Renard G, Chies JM, Volpato G, Volken de Souza CF. Production of beta-galactosidase fused to a cellulose-binding domain for application in sustainable industrial processes. BIORESOURCE TECHNOLOGY 2021; 326:124747. [PMID: 33517047 DOI: 10.1016/j.biortech.2021.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.5 mM (108.77 U/mL) or lactose 5 g/L (93.10 U/mL) as inducers. Cultures at bioreactor scale indicated that higher product yield values in relation to biomass (2000 U/g) and productivity (0.72 U/mL.h) were obtained in culture media containing higher protein concentration. The recombinant enzyme showed high binding affinity to nanocellulose, reaching both immobilization yield and efficiency values of approximately 70% at pH 7.0 after 10 min reaction. The results of the present study pointed out a strategy for recombinant β-galactosidase-CBD production and immobilization, aiming toward the application in sustainable industrial processes using low-cost inputs.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Vera Lúcia Milani Martins
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
19
|
Li Y, Wang B, Wu M, Huan W, Li J. Magnetic graphene oxide nanocomposites as an effective support for lactase immobilization with improved stability and enhanced photothermal enzymatic activity. NEW J CHEM 2021. [DOI: 10.1039/d0nj06260j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic graphene oxide-immobilized lactase with high loading capacity, improved stabilities, and photothermal enhancement of activity has been reported.
Collapse
Affiliation(s)
- Yinglong Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Buchuan Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Minjie Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A&F University
- Lin’an
- China
| |
Collapse
|
20
|
Analytical Determination of the Optimal Feed Temperature for Hydrogen Peroxide Decomposition Process Occurring in Bioreactor with a Fixed-Bed of Commercial Catalase. Catalysts 2020. [DOI: 10.3390/catal11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hydrogen peroxide-immobilized commercial catalase system was chosen to estimate the optimal feed temperature (OFT) for fixed-bed reactor (FXBR). This feed temperature was obtained based on analytical solution by maximizing the time-averaged substrate conversion under a constant feed flow rate and temperature constraints. In calculations a set of partial differential equations describing the conservation equation for fixed-bed reactor, assuming plug flow and kinetic equation for the rate of enzyme parallel deactivation was taken into account. The model is based on kinetic, and mass-transfer parameters estimated previously in a real decomposition process of hydrogen peroxide (HP). The simulation showed that the OFT is strongly dependent on hydrogen peroxide feed concentration, feed flow rate and diffusional resistances expressed by biocatalyst global effectiveness factor. It has been shown that the more significant diffusional resistances and the higher HP conversions are, the higher the optimal feed temperature is. The calculated values of the OFT were verified with the experimental results obtained in the model reactor at selected values of the feed flow rate. Presented analysis poses a significant simplification in a numerical computational procedure and can be very useful for engineers to select the temperature condition at which bioreactor productivity is expected to be maximal.
Collapse
|
21
|
Gennari A, Führ AJ, Volpato G, Volken de Souza CF. Magnetic cellulose: Versatile support for enzyme immobilization - A review. Carbohydr Polym 2020; 246:116646. [DOI: 10.1016/j.carbpol.2020.116646] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
|
22
|
Catalytic Activity of Immobilized Chymotrypsin on Hybrid Silica-Magnetic Biocompatible Particles and Its Application in Peptide Synthesis. Appl Biochem Biotechnol 2019; 190:1224-1241. [DOI: 10.1007/s12010-019-03158-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|