1
|
Martin-Martin J, Abad M, Lopez de Pariza X, Ezquerra TA, Nogales A, Sardon H, Sebastián V, Oriol L, Piñol M. Degradable Ureido-Polycarbonate Block Copolymers with a Complex UCST Thermoresponse. Macromol Rapid Commun 2025:e2500029. [PMID: 40119569 DOI: 10.1002/marc.202500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Indexed: 03/24/2025]
Abstract
In this work, amphiphilic block copolymers (BCs) consisting of a hydrophilic poly(ethylene glycol) methyl ether (PEG) and a degradable polycarbonate block derived from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) with pendant ureido units, along with corresponding homopolycarbonates are described. Polymers are synthesized by combining ring opening polymerization (ROP) and thiol-ene/yne functionalization to incorporate UCST-promoting ureido groups. For homopolycarbonates, increasing the ureido groups density along the polymer chain facilitates the upper critical solution temperature (UCST)-type thermoresponse in water. Because of their amphiphilic character, BCs form stable self-assemblies either by direct dispersion in water, co-solvent method or microfluidics. Upon heating, these self-assemblies swell, and collapse due to extensive hydration of the polycarbonate block, rather than becoming solubilized. Thermoresponsiveness is analyzed in terms of the number of ureido groups in the polycarbonate for a given polycarbonate block length as well as the length of polycarbonate block. As a proof of concept, the potential of these self-assemblies as thermoresponsive drug nanocarriers is evaluated, using curcumin as a hydrophobic model drug.
Collapse
Affiliation(s)
- Javier Martin-Martin
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Miriam Abad
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Luis Oriol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Milagros Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| |
Collapse
|
2
|
Kertsomboon T, Kreangkaiwal C, Patarakul K, Chirachanchai S. Introducing UCST onto Chitosan for a Simple and Effective Single-Phase Extraction. Biomacromolecules 2024; 25:1887-1896. [PMID: 38372964 DOI: 10.1021/acs.biomac.3c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upper critical solution temperature (UCST) polymers undergo their own collapsed structures to show thermoresponsive functions favoring controlled release systems, cell adhesion, including separation process, etc. Although the copolymerization of UCST monomers with other vinyl monomers containing a pendant group is a good way to introduce additional functions, uncertain UCST performance as well as extensive bio-related properties are always the points to be considered. To accomplish this, the present work proposes the application of polysaccharides, i.e., chitosan (CS), as the biopolymer backbone to conjugate with functional molecules and UCST polymers. The use of chain transfer agents, e.g., mercaptoacetic acid, in radical polymerization with UCST poly(methacrylamide) (PMAAm) via the CS/NHS (N-hydroxysuccinimide) complex allows the simple water-based modification. The further conjugation of mouse anti-LipL32 IgG monoclonal antibody (anti-LipL32 mAb) onto CS-PMAAm (CS-PMAAm-Ab) enables a selective binding of recombinant LipL32 (rLipL32) antigen (Ag) in the solution. The CS-PMAAm obtained not only shows the cloud point in the range of 10-30 °C but also the extraction of rLipL32 because of CS-PMAAm-Ab-Ag aggregation. The present work demonstrates how CS expresses UCST with additional antibody conjugated is feasible for a simple and effective Ag single-phase extraction.
Collapse
Affiliation(s)
- Thanit Kertsomboon
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Nan Y, Zhao C, Beaudoin G, Zhu XX. Synergistic Approaches in the Design and Applications of UCST Polymers. Macromol Rapid Commun 2023; 44:e2300261. [PMID: 37477638 DOI: 10.1002/marc.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
This review summarizes recent progress in the synergistic design strategy for thermoresponsive polymers possessing an upper critical solution temperature (UCST) in aqueous systems. To achieve precise control of the responsive behavior of the UCST polymers, their molecular design can benefit from a synergistic effect of hydrogen bonding with other interactions or modification of the chemical structures. The combination of UCST behavior with other stimuli-responsive properties of the polymers may yield new functional materials with potential applications such as sensors, actuators, and controlled release devices. The advances in this area provide insight or inspiration into the understanding and design of functional UCST polymers for a wide range of applications.
Collapse
Affiliation(s)
- Yi Nan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Guillaume Beaudoin
- Département de Chimie, Université de Montréal, C.P. 6128, Succ, Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ, Centre-ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
4
|
Pavlíčková VS, Škubník J, Ruml T, Rimpelová S. A Trojan horse approach for efficient drug delivery in photodynamic therapy: focus on taxanes. J Mater Chem B 2023; 11:8622-8638. [PMID: 37615658 DOI: 10.1039/d2tb02147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photodynamic therapy is an effective method for the treatment of several types of cancerous and noncancerous diseases. The key to the success of this treatment method is effective drug delivery to the site of action, for instance, a tumor. This ensures not only the high effectiveness of the therapy but also the suppression of side effects. But how to achieve effective targeted delivery? Lately, much attention has been paid to systems based on the so-called Trojan horse model, which is gaining increasing popularity. The principle of this model is that the effective drug is hidden in the internal structure of a nanoparticle, liposome, or nanoemulsion and is released only at the site of action. In this review article, we focus on drugs from the group of mitotic poisons, taxanes, and their use with photosensitizers in combined therapy. Here, we discuss the possibilities of how to improve the paclitaxel and docetaxel bioavailability, as well as their specific targeting for use in combined photo- and chemotherapy. Moreover, we also present the state of the art multifunctional drugs based on cabazitaxel which, owing to a suitable combination with photosensitizers, can be used besides photodynamic therapy and also in photoacoustic imaging or sonodynamic therapy.
Collapse
Affiliation(s)
- Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
5
|
Zhang Y, Xu C, Zhang D, Chen X. Proteinosomes via Self-Assembly of Thermoresponsive Miktoarm Polymer Protein Bioconjugates. Biomacromolecules 2023; 24:1994-2002. [PMID: 37002865 DOI: 10.1021/acs.biomac.2c01368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
To fabricate nanoscale proteinosomes, thermoresponsive miktoarm polymer protein bioconjugates were prepared through highly efficient molecular recognition between the β-cyclodextrin modified BSA (CD-BSA) and the adamantyl group anchored at the junction point of the thermoresponsive block copolymer poly(ethylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate) (PEG-b-PDEGMA). PEG-b-PDEGMA was synthesized by the Passerini reaction of benzaldehyde-modified PEG, 2-bromo-2-methylpropionic acid, and 1-isocyanoadamantane, followed by the atom transfer radical polymerization of DEGMA. Two block copolymers with different chain lengths of PDEGMA were prepared, and both self-assembled into polymersomes at a temperature above their lower critical solution temperatures (LCST). The two copolymers can undergo molecular recognition with the CD-BSA and form miktoarm star-like bioconjugates. The bioconjugates self-assembled into ∼160 nm proteinosomes at a temperature above their LCSTs, and the miktoarm star-like structure has a great effect on the formation of the proteinosomes. Most of the secondary structure and esterase activity of BSA in the proteinosomes were maintained. The proteinosomes exhibited low toxicity to the 4T1 cells and could deliver model drug doxorubicin into the 4T1 cells.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Changlan Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Daowen Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Xiaoai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
6
|
Pourmadadi M, Ghaemi A, Shaghaghi M, Rahdar A, Pandey S. Cabazitaxel-nano delivery systems as a cutting-edge for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Tian J, Chen T, Huang B, Liu Y, Wang C, Cui Z, Xu H, Li Q, Zhang W, Liang Q. Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomater 2023; 157:367-380. [PMID: 36513249 DOI: 10.1016/j.actbio.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA), as an autoimmune inflammatory disease, is featured by enhanced vascular permeability, irreversible cartilage destroys and bone erosion. Although the pathogenesis of RA is still unclear, the immune environment, particularly the lymphatic system, which is instrumental to immune cell surveillance and interstitial fluid balance, plays vital roles in the process of RA. Herein, an inflammation specific environment activated methotrexate-encapsulated nanomedicine (MTX@NPs) was constructed for RA treatment, which accumulated in inflamed joints, and released MTX in the specific RA microenvironment. Notably, MTX@NPs could regulate the immune environment including reducing the expressions of inflammatory cytokines of macrophages and the inflammatory level of lymphatic epithelial cells (LECs), and ameliorating the lymphatic vessel contraction and drainage. In vitro and In vivo studies illustrated that MTX@NPs exhibited a high RA therapeutic efficacy and insignificant systemic toxicity owing to the suppression of the inflammation response and the improved lymphatic functions of RA joints. It suggests that the nanomedicine paves a potential way to the clinical practice of autoimmune diseases treatments via the regulation of immune environment and lymphatic functions. STATEMENT OF SIGNIFICANCE: Although 1.0% of the population in the world suffers from rheumatoid arthritis (RA), the pathogenesis of RA is still unclear and the therapeutic effect of the first-line clinical drugs is relatively low. Herein, we propose a specific RA-microenvironment triggered nanomedicine (MTX@NPs), which enhances RA treatment of a first-line antirheumatic drug (methotrexate, MTX) by immune environment reconstruction. The nanomedicine exhibits RA joints accumulation by EPR effect, and releases MTX under the specific RA environment, leading to the dramatical drop of M1-type macrophages and acceleration of lymphatic vessel contraction and drainage. Finally, the inflammatory cytokines in RA immune environment are reduced sharply, indicating the outstanding therapeutic efficacy of MTX@NPs to RA.
Collapse
Affiliation(s)
- Jia Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Chao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
8
|
Mu M, Liang X, Zhao N, Chuan D, Chen B, Zhao S, Wang G, Fan R, Zou B, Han B, Guo G. Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor. J Pharm Anal 2023; 13:99-109. [PMID: 36816538 PMCID: PMC9937788 DOI: 10.1016/j.jpha.2022.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Traditional microtubule inhibitors fail to significantly enhance the effect of colorectal cancer; hence, new and efficient strategies are necessary. In this study, a supramolecular nanoreactor (DOC@TA-Fe3+) based on tannic acid (TA), iron ion (Fe3+), and docetaxel (DOC) with microtubule inhibition, reactive oxygen species (ROS) generation, and glutathione peroxidase 4 (GPX4) inhibition, is prepared for ferroptosis/apoptosis treatment. After internalization by CT26 cells, the DOC@TA-Fe3+ nanoreactor escapes from the lysosomes to release payloads. The subsequent Fe3+/Fe2+ conversion mediated by TA reducibility can trigger the Fenton reaction to enhance the ROS concentration. Additionally, Fe3+ can consume glutathione to repress the activity of GPX4 to induce ferroptosis. Meanwhile, the released DOC controls microtubule dynamics to activate the apoptosis pathway. The superior in vivo antitumor efficacy of DOC@TA-Fe3+ nanoreactor in terms of tumor growth inhibition and improved survival is verified in CT26 tumor-bearing mouse model. Therefore, the nanoreactor can act as an effective apoptosis and ferroptosis inducer for application in colorectal cancer therapy.
Collapse
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shasha Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China,Corresponding author.
| |
Collapse
|
9
|
Chang Y, Cui P, Zhou S, Qiu L, Jiang P, Chen S, Wang C, Wang J. Metal-phenolic network for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Wang R, Wang X, Mu X, Feng W, Lu Y, Yu W, Zhou X. Reducing thermal damage to adjacent normal tissue with dual thermo-responsive polymer via thermo-induced phase transition for precise photothermal theranosis. Acta Biomater 2022; 148:142-151. [PMID: 35690327 DOI: 10.1016/j.actbio.2022.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
Photothermal therapy has been extensively studied to improve the light-to-heat efficiency for tumor ablation, but could cause severe damage to adjacent healthy tissue due to the thermal transfer, the random distribution of photothermal agents (PTAs), or combination hereof. Herein, we solve this dilemma with a material design strategy to develop a P(AAm-co-AN)-b-P(NIPAM-co-DMAa)-b-P(AAm-co-AN) ABA triblock copolymer by RAFT polymerization, which exhibits both UCST and LCST dual thermo-responsive behaviors in aqueous solution. The P(AAm-co-AN) block with appropriate AN content allows to finely tune its UCST to ∼ 43°C, which can effectively co-assemble with camptothecin (CPT) and Cy7-TCF, a near-infrared (NIR) PTA, realizing the photo-activated "on-demand" release of CPT and Cy7-TCF. The LCST of P(NIPAM-co-DMAa) segment is adjusted to ∼ 53°C by varying DMAa content, enabling an irreversible sol-to-gel transition. The heat transfer in hydrogel and heat dissipation at the interface of hydrogel-adjacent tissue are limited, resulting in selectively cell killing in tumor, with little hyperthermia in adjacent tissues. Moreover, the hydrogel continues to release CPT to enhance the synergistic efficacy of PTT with chemotherapy. These results suggest that dual thermo-responsive polymer can contribute PTT with high selectivity and negligible side effects for precise medicine. STATEMENT OF SIGNIFICANCE: Photothermal therapy exploits the susceptibility of tumor cells toward external light-induced hyperthermia, but can cause severe damage to adjacent healthy tissue due to thermal transfer, random distribution of photothermal agents (PTAs), or combination hereof. Here, we solve this dilemma by developing a P(AAm-co-AN)-b-P(NIPAM-co-DMAa)-b-P(AAm-co-AN) triblock copolymer with UCST and LCST dual thermo-responsive behaviors, realizing the sequential micelle-unimer-hydrogel phase transitions. The polymer can effectively encapsulate PTA/drug, achieve long systemic circulation, accumulate in tumor through EPR effect, regulate drug release by controlling tumor temperature above UCST via irradiation, and finally exhibit a sol-gel transition, eradicating the heat transfer to adjacent tissue. This represents a practicable strategy to guide the design of next-generation polymeric vector that can contribute PTT with negligible side effects.
Collapse
Affiliation(s)
- Rui Wang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Xu Wang
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Xueluer Mu
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Wenbi Feng
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Yingxi Lu
- School of Material Science, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.
| | - Weisong Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R. China
| | - Xianfeng Zhou
- Key Lab of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.
| |
Collapse
|
11
|
Chen KF, Zhang Y, Lin J, Chen JY, Lin C, Gao M, Chen Y, Liu S, Wang L, Cui ZK, Jia YG. Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107374. [PMID: 35129310 DOI: 10.1002/smll.202107374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Specific recognition and strong affinities of bacteria receptors with the host cell glycoconjugates pave the way to control the bacteria aggregation and kill bacteria. Herein, using aggregation-induced emission (AIE) molecules decorated upper critical solution temperature (UCST) polyvalent scaffold (PATC-GlcN), an approach toward visualizing bacteria aggregation and controlling bacteria-polyvalent scaffolds affinities under temperature stimulus is described. Polyvalent scaffolds with diblocks, one UCST block PATC of polyacrylamides showing a sharp UCST transition and typical AIE behavior, the second bacteria recognition block GlcN of hydrophilic glucosamine modified polyacrylamide, are prepared through a reversible addition and fragmentation chain transfer polymerization. Aggregated chain conformation of polyvalent scaffolds at temperature below UCST induces the aggregation of E. coli ATCC8739, because of the high density of glucosamine moieties, whereas beyond UCST, the hydrophilic state of the scaffolds dissociates the bacteria aggregation. The sweet-talking of bacteria toward the polyvalent scaffolds can be visualized by the fluorescent imaging technique, simultaneously. Due to the specific recognition of polyvalent scaffolds with bacteria, the photothermal agent IR780 loaded PATC-GlcN shows the targeted killing ability toward E. coli ATCC8739 in vitro and in vivo under NIR radiation.
Collapse
Affiliation(s)
- Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiqing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jun-You Chen
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Zhang W, Lyu X, Zhang L, Wang W, Shen Q, Lu S, Lu L, Zhan M, Hu X. Rationally Driven Drug Nonradiative Decay via a Label-free Polyprodrug Strategy to Renew Tumor Cascade Photothermal-Chemotherapy. Macromol Rapid Commun 2022; 43:e2100918. [PMID: 35106866 DOI: 10.1002/marc.202100918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/16/2022] [Indexed: 11/09/2022]
Abstract
Drugs are frequently used for only chemotherapy that ignores their photophysical properties that potentially endow them with other therapeutic potency. Additionally, current photothermal-chemotherapy replies on the co-delivery of drugs and photothermal agents, but their spatiotemporal delivery and precise release is unsatisfactory. Herein, we report label-free doxorubicin (DOX) polyprodrug nanoparticles (DPNs) formulated from disulfide bonds-tethered DOX polyprodrug amphiphiles (PDMA-b-PDOXM). Benefiting from boosted nonradiative decay of high-density DOX, significant fluorescence quenching and photothermal effect are observed for DPNs without common photothermal agents. Upon cellular uptake and laser irradiation, the heat can promote lysosomal escape of DPNs into reductive cytosol, whereupon free DOX is released to activate chemotherapy and fluorescence, achieving rational cascade photothermal-chemotherapy. Current label-free polyprodrug strategy can make full use of drug, it provides an alternative insight to extend the therapeutic domain of drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenjia Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510631, China
| | - Li Zhang
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong, 510080, China
| | - Wenhui Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
13
|
Sun J, Lu J, Li C, Tian Y, Liu K, Liu L, Zhao C, Zhang M. Design of a UCST Polymer with Strong Hydrogen Bonds and Reactive Moieties for Facile Polymer-Protein Hybridization. Biomacromolecules 2022; 23:1291-1301. [PMID: 35049291 DOI: 10.1021/acs.biomac.1c01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer-protein hybrids have been extensively used in biomedical fields. Polymers with upper critical solution temperature (UCST) behaviors can form a hydrated coacervate phase below the cloud point (Tcp), providing themselves the opportunity to directly capture hydrophilic proteins and form hybrids in aqueous solutions. However, it is always a challenge to obtain a UCST polymer that could aggregate at a high temperature at a relatively low concentration and also efficiently bind with proteins. In this work, a UCST polymer reactive with proteins was designed, and its temperature responsiveness and protein-capture ability were investigated in detail. The polymer was synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylamide (AAm) and N-acryloxysuccinimide (NAS). Interestingly, taking advantage of the partial hydrolysis of NAS into acrylic acid (AAc), the obtained P(AAm-co-NAS-co-AAc) polymer exhibited an excellent UCST behavior and possessed good protein-capture ability. It showed a relatively higher Tcp (81 °C) at a lower concentration (0.1 wt %) and quickly formed polymer-protein hybrids with high protein loading and without losing protein bioactivity, and both the polymer and polymer-protein nanoparticles showed good cytocompatibility. All the findings are attributed to the unique structure of the polymer, which provided not only the strong and stable hydrogen bonds but also the quick and mild reactivity. The work offers an easy and mild strategy for polymer-protein hybridization directly in aqueous solutions, which may find applications in biomedical fields.
Collapse
Affiliation(s)
- Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Kang Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
14
|
Lin YC, Fang TY, Kao HY, Tseng WC. Nanoassembly of UCST polypeptide for NIR-modulated drug release. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021; 9:8718-8738. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the therapeutic performance of traditional mono-chemotherapy on cancers remains unsatisfactory because of the tumor heterogeneity and multidrug resistance. In light of intricate tumor structures and distinct tumor microenvironments (TMEs), combinational therapeutic strategies with multiple anticancer drugs from different mechanisms can synergistically optimize the outcomes and concomitantly minimize the adverse effects during the therapy process. Extensive research on polymeric micelles (PMs) for biomedical applications has revealed the growing importance of nanomedicines for cancer therapy in the recent decade. Starting from traditional simple delivery systems, PMs have been extended to multi-faceted therapeutic strategies. Here we review and summarize the most recent advances in combinational therapy based on multifunctional PMs including a combination of multiple anticancer drugs, chemo-gene therapy, chemo-phototherapy and chemo-immunotherapy. The design approaches, action mechanisms and therapeutic applications of these nanodrugs are summarized. In addition, we highlight the opportunities and potential challenges associated with this promising field, which will provide new guidelines for advanced combinational cancer chemotherapy.
Collapse
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
16
|
Ao M, Yu F, Li Y, Zhong M, Tang Y, Yang H, Wu X, Zhuang Y, Wang H, Sun X, Hong X, Chen XD. Carrier-free nanoparticles of camptothecin prodrug for chemo-photothermal therapy: the making, in vitro and in vivo testing. J Nanobiotechnology 2021; 19:350. [PMID: 34717646 PMCID: PMC8557616 DOI: 10.1186/s12951-021-01093-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nanoscale drug delivery systems have emerged as broadly applicable approach for chemo-photothermal therapy. However, these nanoscale drug delivery systems suffer from carrier-induced toxicity, uncontrolled drug release and low drug carrying capacity issues. Thus, to develop carrier-free nanoparticles self-assembled from amphiphilic drug molecules, containing photothermal agent and anticancer drug, are very attractive. Results In this study, we conjugated camptothecin (CPT) with a photothermal agent new indocyanine green (IR820) via a redox-responsive disulfide linker. The resulting amphiphilic drug–drug conjugate (IR820-SS-CPT) can self-assemble into nanoparticles (IR820-SS-CPT NPs) in aqueous solution, thus remarkably improving the membrane permeability of IR820 and the aqueous solubility of CPT. The disulfide bond in the IR820-SS-CPT NPs could be cleaved in GSH rich tumor microenvironment, leading to the on demand release of the conjugated drug. Importantly, the IR820-SS-CPT NPs displayed an extremely high therapeutic agent loading efficiency (approaching 100%). Besides, in vitro experimental results indicated that IR820-SS-CPT NPs displayed remarkable tumor cell killing efficiency. Especially, the IR820-SS-CPT NPs exhibited excellent anti-tumor effects in vivo. Both in vitro and in vivo experiments were conducted, which have indicated that the design of IR820-SS-CPT NPs can provide an efficient nanotherapeutics for chemo-photothermal therapy. Conclusion A novel activatable amphiphilic small molecular prodrug IR820-SS-CPT has been developed in this study, which integrated multiple advantages of GSH-triggered drug release, high therapeutic agent content, and combined chemo-photothermal therapy into one drug delivery system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01093-y.
Collapse
Affiliation(s)
- Mingtao Ao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Yu
- Medical College, Guangxi University, Nanning, 530004, China. .,Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning, 530004, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China
| | - Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, 276826, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China.
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Lin Q, Jia M, Fu Y, Li B, Dong Z, Niu X, You Z. Upper-Critical-Solution-Temperature Polymer Modified Gold Nanorods for Laser Controlled Drug Release and Enhanced Anti-Tumour Therapy. Front Pharmacol 2021; 12:738630. [PMID: 34630113 PMCID: PMC8495017 DOI: 10.3389/fphar.2021.738630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023] Open
Abstract
Photothermal therapy (PTT) has become effective method for the treatment of malignant cancer. The development of PTT system with high anti-tumour effect is still the feasible research direction. Here, a new type of gold nanorods (AuNRs)-doxorubicin (DOX)/mPEG10K-peptide/P(AAm-co-AN) (APP-DOX) nano drug delivery system was proposed. Among them, AuNRs was used as high-efficiency photothermal agent. APP-DOX had a suitable size and can be targeted to accumulate in tumour tissues through circulation in the body. The abundant matrix metalloproteinase 2 (MMP-2) in the tumour environment intercepted and cut off the short peptide chain structure grafted on APP-DOX. At the same time, the removal of the PEG segment leaded to an increase in the hydrophobic properties of the system. Nanoparticles aggregated into large particles, causing them to stay and aggregate further at the tumour site. When irradiated by 808 nm near-infrared laser, APP-DOX achieved a gradual heating process. High temperature can effectively ablate tumours and enable UCST polymer to achieve phase transition, resulting in more anti-cancer drugs loaded in the polymer layer DOX was released, effectively killing cancer cells. Animal experiments had verified the possibility of the nano drug-carrying system and good tumour treatment effect. What’s more worth mentioning is that compared with free DOX, the nano drug delivery system had lower biological toxicity and not cause obvious harmful effects on normal organs and tissues.
Collapse
Affiliation(s)
- Que Lin
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Mao Jia
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoya Niu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021; 17:2123-2163. [PMID: 34476018 PMCID: PMC8381851 DOI: 10.3762/bjoc.17.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
Collapse
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, NE 68588, Lincoln, USA
| |
Collapse
|
19
|
Tian J, Huang B, Cui Z, Wang P, Chen S, Yang G, Zhang W. Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomater 2021; 130:447-459. [PMID: 34082096 DOI: 10.1016/j.actbio.2021.05.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Owing to their reversibly dynamic features, and the regularity of their architectures, supramolecular organic frameworks (SOFs) have attracted attention as new porous materials. Herein, we propose a smart SOF platform for enhanced photodynamic therapy, where the SOF with a superior mitochondria-targeting capability could be cleaved by reactive oxygen species (ROS) produced by itself for highly enhancing PDT. Moreover, it can further work as a platform for carrying chemo-therapeutic drug doxorubicin for synergistic chemo-photodynamic therapy. The SOF is constructed by combining a tetra-β-cyclodextrin-conjugated porphyrin photosensitizer and a ROS-sensitive thioketal linked adamantane dimer utilizing a host-guest supramolecular strategy. The unique supramolecular framework not only completely resolves the aggregation caused quenching of porphyrin photosensitizers but also endows them with significantly enhanced water-solubility. The in vitro and in vivo results demonstrate that the SOF could be targeted onto mitochondria by confocal imaging, and dissociated by ROS generated by itself, leading to autonomous release of porphyrin photosensitizers and DOX for high anti-cancer activity. It is believed that the strategy using a SOF has the potential of being used to construct versatile agents for combined therapies. STATEMENT OF SIGNIFICANCE: Photosensitizers are the essential element in photodynamic therapy. However, typical photosensitizers commonly encounter poor water-solubility, non-specific tumor-targeting, aggregation-caused quenching (ACQ), which seriously reduce PDT efficacy. A mitochondria-targeting and ROS-sensitive supramolecular organic framework (SOF) is designed for photodynamic therapy in cancer treatment, which could completely overcome the bottleneck in the applications of photosensitizers (PSs). The SOF is constructed by combining a tetra-β-cyclodextrin-conjugated porphyrin photosensitizer and a ROS-sensitive thioketal linked adamantane dimer unit utilizing a host-guest supramolecular strategy. The unique supramolecular framework not only completely resolves the aggregation caused quenching of porphyrin photosensitizers but also endows them with significantly enhanced water-solubility. Moreover, the SOF can be readily functionalized to incorporate the anti-cancer agent Doxorubicin and mitochondria targeting molecules through respective physical encapsulation and host-guest interactions.
Collapse
Affiliation(s)
- Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Peng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuai Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
20
|
Zhu L, Liu K, Zheng S, Zhang X, Yan J, Li W, Zhang A. Upper Critical Solution Temperature-Type Responsive Cyclodextrins with Characteristic Inclusion Abilities. Chemistry 2021; 27:10470-10476. [PMID: 34008253 DOI: 10.1002/chem.202101283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 11/10/2022]
Abstract
Water-soluble and thermoresponsive macrocycles with stable inclusion toward guests are highly valuable to construct stimuli-responsive supramolecular materials for versatile applications. Here, we develop such macrocycles - ureido-substituted cyclodextrins (CDs) which exhibit unprecedented upper critical solution temperature (UCST) behavior in aqueous media. These novel CD derivatives showed good solubility in water at elevated temperature, but collapsed from water to form large coacervates upon cooling to low temperature. Their cloud points are greatly dependent on concentration and can be mediated through oxidation and chelation with silver ions. Significantly, the amphiphilicity of these CD derivatives is supportive to host-guest binding, which affords them inclusion abilities to guest dyes. The inclusion complexation remained nearly intact during thermally induced phase transitions, which is in contrast to the switchable inclusion behavior of lower critical solution temperature (LCST)-type CDs. Moreover, ureido-substituted CDs were exploited to co-encapsulate a pair of guest dyes whose fluorescence resonance energy transfer process can be switched by the UCST phase transition. We therefore believe these novel thermoresponsive CDs may form a new strategy for developing smart macrocycles and allow for exploring smart supramolecular materials.
Collapse
Affiliation(s)
- Li Zhu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| | - Kun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| | - Shudong Zheng
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 380, Shanghai, 200444, P. R. China
| |
Collapse
|
21
|
Lu J, Zhou X, Sun J, Xu M, Zhang M, Zhao C. Small dop of comonomer, giant shift of cloud point: Thermo‐responsive behavior and mechanism of poly(methylacrylamide) copolymers with an upper critical solution temperature. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jianlei Lu
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| | - Xionglin Zhou
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering Chinese Academy of Medical Science and Peking Union Medical College Tianjin China
| | - Mengdi Xu
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering Chinese Academy of Medical Science and Peking Union Medical College Tianjin China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering Ningbo University Ningbo China
| |
Collapse
|
22
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
24
|
Jia YG, Chen KF, Gao M, Liu S, Wang J, Chen X, Wang L, Chen Y, Song W, Zhang H, Ren L, Zhu XX, Tang BZ. Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Zhang Y, Uthaman S, Song W, Eom KH, Jeon SH, Huh KM, Babu A, Park IK, Kim I. Multistimuli-Responsive Polymeric Vesicles for Accelerated Drug Release in Chemo-photothermal Therapy. ACS Biomater Sci Eng 2020; 6:5012-5023. [DOI: 10.1021/acsbiomaterials.0c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhang
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wenliang Song
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kuen Hee Eom
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Amal Babu
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
26
|
Shin H, Na K. Cancer-Targetable pH-Sensitive Zinc-Based Immunomodulators Combined with Photodynamic Therapy for in Situ Vaccination. ACS Biomater Sci Eng 2020; 6:3430-3439. [PMID: 33463185 DOI: 10.1021/acsbiomaterials.0c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A cancer vaccine is a promising immunotherapy modality, but the heterogenicity of tumors and substantial time and costs required in tumor-associated antigen (TAA) screening have hindered the development of an individualized vaccine. Herein, we propose in situ vaccination using cancer-targetable pH-sensitive zinc-based immunomodulators (CZIs) to elicit antitumor immune response against TAAs of patients' tumors without the ex vivo identification processes. In the tumor microenvironment, CZIs promote the release of large amounts of TAAs and exposure of calreticulin on the cell surface via immunogenic cell death through the combined effect of excess zinc ions and photodynamic therapy (PDT). With these properties, CZIs potentiate antitumor immunity and inhibit tumor growth as well as lung metastasis in CT26 tumor-bearing mice. This nanoplatform may suggest an alternative therapeutic strategy to overcoming the limitations of existing cancer vaccines and may broaden the application of nanoparticles for cancer immunotherapy.
Collapse
Affiliation(s)
- Heejun Shin
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea
| | - Kun Na
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea.,Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea
| |
Collapse
|
27
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
28
|
Li L, Zhao W, Qu Z, Shi L, Tan S, Ha E, Jia T, Sun T. Novel phthalocyanine-based micelles/PNIPAM composite hydrogels: spatially/temporally controlled drug release triggered by NIR laser irradiation. NEW J CHEM 2020. [DOI: 10.1039/d0nj01882a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Near-infrared (NIR) light-responsive hydrogels hold significant potential for biomedical application, especially in the remote-controlled release of anticancer drugs.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Forest Plant Ecology
- Ministry of Education
- Engineering Research Center of Forest Bio-Preparation
- College of Chemistry
- Chemical Engineering and Resource Utilization
| | - Wancheng Zhao
- Key Laboratory of Forest Plant Ecology
- Ministry of Education
- Engineering Research Center of Forest Bio-Preparation
- College of Chemistry
- Chemical Engineering and Resource Utilization
| | - Zheng Qu
- Key Laboratory of Forest Plant Ecology
- Ministry of Education
- Engineering Research Center of Forest Bio-Preparation
- College of Chemistry
- Chemical Engineering and Resource Utilization
| | - Lei Shi
- Key Laboratory of Forest Plant Ecology
- Ministry of Education
- Engineering Research Center of Forest Bio-Preparation
- College of Chemistry
- Chemical Engineering and Resource Utilization
| | - Shengnan Tan
- Analytical Testing Center
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Enna Ha
- College of Health Science and Environmental Engineering
- Shenzhen Technology University
- Shenzhen 518118
- China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology
- Ministry of Education
- Engineering Research Center of Forest Bio-Preparation
- College of Chemistry
- Chemical Engineering and Resource Utilization
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology
- Ministry of Education
- Engineering Research Center of Forest Bio-Preparation
- College of Chemistry
- Chemical Engineering and Resource Utilization
| |
Collapse
|
29
|
Augé A, Camerel F, Benoist A, Zhao Y. Near-infrared light-responsive UCST-nanogels using an efficient nickel-bis(dithiolene) photothermal crosslinker. Polym Chem 2020. [DOI: 10.1039/d0py00567c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new kind of near-infrared (NIR) light-responsive polymer nanogel is demonstrated.
Collapse
Affiliation(s)
- Amélie Augé
- Laboratoire de Polymères et de Cristaux Liquides
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada
| | - Franck Camerel
- Institut des Sciences Chimique de Rennes – UMR 6226
- Université de Rennes
- France
| | - Apolline Benoist
- Laboratoire de Biogéochimie Terrestre
- Département de Chimie
- Université de Sherbrooke
- Québec
- Canada
| | - Yue Zhao
- Laboratoire de Polymères et de Cristaux Liquides
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|
30
|
Zhan X, Nie X, Gao F, Zhang C, You YZ, Yu Y. An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer. Biomater Sci 2020; 8:5931-5940. [DOI: 10.1039/d0bm01324b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A functional nanoplatform with ROS- and temperature-sensitivity was reported to achieve combined cancer treatment under NIR stimulation.
Collapse
Affiliation(s)
- Xiang Zhan
- AnHui Provincial Hospital
- Cheeloo College of Medicine
- Shandong University
- Jinan
- China
| | - Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Fan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Cong Zhang
- Department of Gastroenterology
- AnHui Provincial Hospital
- Division of Life Sciences and Medicine
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Yue Yu
- AnHui Provincial Hospital
- Cheeloo College of Medicine
- Shandong University
- Jinan
- China
| |
Collapse
|
31
|
Tian J, Xiao C, Huang B, Wang C, Zhang W. Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomater 2020; 101:495-506. [PMID: 31726248 DOI: 10.1016/j.actbio.2019.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
The aggregation-caused quenching (ACQ) effect of photosensitizers and multidrug resistance are the major obstacles in photodynamic therapy (PDT) and chemotherapy, respectively. Synergistic photo-chemotherapy is a promising cancer treatment to overcome the short boards of each single therapy. However, the fabrication of nanocarriers acting as both photosensitizers in PDT and the vehicle of drug release is a key challenge. Herein, we constructed a well-defined porphyrin-containing Janus macromolecular brush and used it as both a photosensitizer and a pH-responsive vehicle for DOX release. The Janus macromolecular brush with pH-responsive side chains and porphyrin units linked covalently in each repeat unit was synthesized by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The high grafting content of porphyrin units in the macromolecular brush improved the DOX loading capability by π-π stacking and therefore reduced the total treatment dose of DOX-loaded macromolecular brush nanoparticles (NPs). The pH-responsive side chains played triple roles in synergistic cascade-amplified PDT and enhanced chemotherapy including an executor of controlled drug release, a ligand with a mitochondria-targeting feature, and a barrier to reduce the ACQ effect of porphyrin units. In vitro and in vivo studies confirmed that the DOX-loaded macromolecular brush NPs exhibited high phototoxicity and significant tumor inhibition efficacy. STATEMENT OF SIGNIFICANCE: Synergistic photodynamic therapy (PDT) and chemotherapy has emerged as a promising cancer treatment to overcome the challenges of a single modality. Herein, we constructed new pH-responsive vesicles using porphyrin-containing Janus macromolecular brushes as theranostic nanocarriers to encapsulate high-loading doxorubicin (DOX) for synergistic cascade-amplified PDT and enhanced chemotherapy. The high grafting content of porphyrin units in Janus macromolecular brushes improved DOX loading capability by π-π stacking for enhanced chemotherapy. Moreover, pH-responsive side chains subsequently enhanced the suppression of the aggregation-caused quenching (ACQ) effect of porphyrins for cascade-amplified PDT. In vitro and in vivo studies confirmed that DOX-loaded macromolecular brush nanoparticles exhibited high phototoxicity and significant tumor inhibition efficacy.
Collapse
|
32
|
Wang C, Huang B, Yang G, Ouyang Y, Tian J, Zhang W. NIR-Triggered Multifunctional and Degradable Nanoplatform Based on an ROS-Sensitive Block Copolymer for Imaging-Guided Chemo-Phototherapy. Biomacromolecules 2019; 20:4218-4229. [DOI: 10.1021/acs.biomac.9b01123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
33
|
Huang B, Tian J, Jiang D, Gao Y, Zhang W. NIR-Activated “OFF/ON” Photodynamic Therapy by a Hybrid Nanoplatform with Upper Critical Solution Temperature Block Copolymers and Gold Nanorods. Biomacromolecules 2019; 20:3873-3883. [DOI: 10.1021/acs.biomac.9b00963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|