1
|
Shah T, Polara H, Babanyinah G, Bhadran A, Wang H, Castillo CC, Grabowski G, Biewer MC, Torabifard H, Stefan MC. Computational design to experimental validation: molecular dynamics-assisted development of polycaprolactone micelles for drug delivery. J Mater Chem B 2025; 13:4166-4178. [PMID: 40047718 DOI: 10.1039/d4tb02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Amphiphilic diblock copolymers are used in drug delivery systems for cancer treatments. However, these carriers suffer from lower drug loading capacity, poor water solubility, and non-targeted drug release. Here, we utilized a computational approach to analyze the effect of the functional groups of the hydrophobic block on the drug-polymer interactions. To design effective drug carriers, four different amphiphilic block copolymer micelles with distinct aromatic and heteroaromatic groups at the hydrophobic core were subjected to molecular dynamics simulations. The solvent-accessible surface area, water shell, hydrogen bonding, and radius of gyration of the simulated micelles were determined. Further, we assessed the interactions between the hydrophobic block and drug molecules using linear interaction energy and non-covalent interactions. The computational studies revealed that the micelles containing a novel poly(γ-2-methoxyfuran-ε-caprolactone) (PFuCL) hydrophobic block have the highest polymer-drug interactions. From these findings, we synthesized a novel amphiphilic poly(ethylene glycol)-b-poly(γ-2-methoxyfuran(ε-caprolactone)) (PEG-b-PFuCL) block copolymer using ring-opening polymerization of FuCL monomer. The polymer was self-assembled in aqueous media to form micelles. The aromatic segment of PEG-b-PFuCL micelles enhanced the doxorubicin (DOX) loading through non-covalent interactions, resulting in a 4.25 wt% drug-loading capacity. We also showed that the hydrolysis of the ester bond allowed a faster in vitro drug release at pH 5.0 compared to pH 7.4. Cell viability experiments revealed that DOX-loaded PEG-b-PFuCL micelles show that micelles are cytotoxic and readily uptaken into MDA-MB-231 cells. Therefore, furan-substituted micelles will be an ideal drug carrier with higher polymer-to-drug interactions, enhanced drug loading, and lower premature leakage.
Collapse
Affiliation(s)
- Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Godwin Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Cristina Cu Castillo
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Gerik Grabowski
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Rodríguez-Soto MA, Suárez Vargas N, Ayala-Velásquez M, Aragón-Rivera AM, Ostos C, Cruz JC, Muñoz Camargo C, Kim S, D’Amore A, Wagner WR, Briceño JC. Polyester urethane urea (PEUU) functionalization for enhanced anti-thrombotic performance: advancing regenerative cardiovascular devices through innovative surface modifications. Front Bioeng Biotechnol 2023; 11:1257778. [PMID: 37799814 PMCID: PMC10548217 DOI: 10.3389/fbioe.2023.1257778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Thrombogenesis, a major cause of implantable cardiovascular device failure, can be addressed through the use of biodegradable polymers modified with anticoagulating moieties. This study introduces a novel polyester urethane urea (PEUU) functionalized with various anti-platelet deposition molecules for enhanced antiplatelet performance in regenerative cardiovascular devices. Methods: PEUU, synthesized from poly-caprolactone, 1,4-diisocyanatobutane, and putrescine, was chemically oxidized to introduce carboxyl groups, creating PEUU-COOH. This polymer was functionalized in situ with polyethyleneimine, 4-arm polyethylene glycol, seleno-L-cystine, heparin sodium, and fondaparinux. Functionalization was confirmed using Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Bio-compatibility and hemocompatibility were validated through metabolic activity and hemolysis assays. The anti-thrombotic activity was assessed using platelet aggregation, lactate dehydrogenase activation assays, and scanning electron microscopy surface imaging. The whole-blood clotting time quantification assay was employed to evaluate anticoagulation properties. Results: Results demonstrated high biocompatibility and hemocompatibility, with the most potent anti-thrombotic activity observed on pegylated surfaces. However, seleno-L-cystine and fondaparinux exhibited no anti-platelet activity. Discussion: The findings highlight the importance of balancing various factors and addressing challenges associated with different approaches when developing innovative surface modifications for cardiovascular devices.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Ostos
- Group CATALAD, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
4
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
El Jundi A, Mayor M, Folgado E, Gomri C, Benkhaled BT, Chaix A, Verdie P, Nottelet B, Semsarilar M. Peptide-guided self-assembly of polyethylene glycol-b-poly(ε-caprolactone-g-peptide) block copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Niu Y, Lu Y. Construction of
pH
‐responsive core crosslinked micelles via thiol‐yne click reaction. J Appl Polym Sci 2022. [DOI: 10.1002/app.52753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yile Niu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yanbing Lu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
7
|
Pacheco M, Mayorga-Martinez CC, Escarpa A, Pumera M. Micellar Polymer Magnetic Microrobots as Efficient Nerve Agent Microcleaners. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26128-26134. [PMID: 35612487 DOI: 10.1021/acsami.2c02926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Micro-/nanorobot technology has developed rapidly in recent years due to their great potential to perform multiple tasks. Here, we develop magnetic microrobots prepared as polycaprolactone/Fe3O4 microspheres covered by micellar polyethyleneimine and use them to efficiently remove a nerve agent from contaminated water. The magnetic polymeric microrobots presented in this work removed around 60% of the nerve agent from water samples in a short time. The attractive performance of these magnetic microrobots offers a very promising approach to large-scale water treatment for environmental remediation.
Collapse
Affiliation(s)
- Marta Pacheco
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Alberto Escarpa
- Chemical Research Institute "Andres M. del Río", University of Alcalá, Alcalá de Henares 28802, Madrid, Spain
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
8
|
Yuan T, Li Y, Song DP. Interfacial Self-Assembly of Amphiphilic Core-Shell Bottlebrush Block Copolymers Toward Responsive Photonic Balls Bearing Ionic Channels. Macromol Rapid Commun 2022; 43:e2200188. [PMID: 35436806 DOI: 10.1002/marc.202200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Photonic balls can be facilely obtained through interfacial self-assembly of amphiphilic bottlebrush block polymers (BBCPs) within a water-in-oil-in-water (w/o/w) multiple emulsion system, and polystyrene (PS) has been employed as the skeleton of the balls showing no responsive properties. Here, we demonstrate the design and synthesis of core-shell BBCPs with a poly(tert-butyl acrylate)-block-polystyrene (PtBA-b-PS) block copolymer as the hydrophobic side chains and poly(ethylene glycol) (PEG) as the hydrophilic block. Interfacial self-assembly of the core-shell BBCPs within shrinking droplets produces porous microspheres with full-spectrum structural colors through an organized spontaneous emulsification (OSE) process. The PtBA core wrapped by PS in the skeleton of the balls can be converted into polyacrylic acid (PAA) forming an ionic channel responsive to pH variations. Consequently, the hydrolyzed photonic balls show different colors under different pH conditions dependent on varied degrees of ionization and hydration of the PAA channel. Reflected colors can be verified using an optical spectrometer, providing an effective strategy for precise pH indication. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tengfei Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
9
|
Vagias A, Papagiannopoulos A, Kreuzer LP, Giaouzi D, Busch S, Pispas S, Müller-Buschbaum P. Effects of Polymer Block Length Asymmetry and Temperature on the Nanoscale Morphology of Thermoresponsive Double Hydrophilic Block Copolymers in Aqueous Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Lucas P. Kreuzer
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Despoina Giaouzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Peter Müller-Buschbaum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
10
|
Qin J, Li X, Lv Q, He M, Chen M, Xu Y, Chen X, Yu J. Selective dispersion of neutral nanoplates and the interfacial structure of copolymers based on coarse-grained molecular dynamics simulations. SOFT MATTER 2021; 17:5950-5959. [PMID: 34046651 DOI: 10.1039/d1sm00352f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The selective dispersion of neutral nanoplates (NNP) and the control of the interfacial structure of copolymers are challenging. In this work, we employ coarse-grained molecular dynamics (CGMD) to investigate the dispersion of NNP and the interfacial structure. The introduction of NNP significantly changes the interfacial structure and formation mechanism of diblock copolymers (DBCP), which is related to the matrix phase, distribution, composition, and length of two different chain segments (A and B) in AmBn-DBCP. The phase-weak groups that have a poor interaction with NNP will stack easily, whereas the stacking degree for the phase-rich groups that have a strong interaction with NNP decreases due to the addition of NNP. The interaction between two phases will be enhanced, which is favorable for the formation of a random network structure. Due to the strong interaction of the phase-rich groups with NNP, the NNP change the accumulation types of phase-weak groups and enhances the combination of two chain segments in favor of the formation of a cylindrical micelle-like structure. The transmission electron microscopy (TEM) images show that layered double hydroxide (LDH) orientationally distributes in the acrylic acid chain segments in ethylene acrylic acid (EAA) random copolymers, which is in agreement with the theoretical simulation results. This proves that the selective dispersion of LDH in copolymers affects their interfacial structure.
Collapse
Affiliation(s)
- Jun Qin
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China. and Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xing Li
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qing Lv
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Min He
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Mengyu Chen
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yong Xu
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou Province, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Yu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China. and National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550058, China
| |
Collapse
|
11
|
Shi X, Zhang Y, Tian Y, Xu S, Ren E, Bai S, Chen X, Chu C, Xu Z, Liu G. Multi-Responsive Bottlebrush-Like Unimolecules Self-Assembled Nano-Riceball for Synergistic Sono-Chemotherapy. SMALL METHODS 2021; 5:e2000416. [PMID: 34927821 DOI: 10.1002/smtd.202000416] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/02/2020] [Indexed: 06/14/2023]
Abstract
Improved drug loading content, bioavailability, and controlled release in targeted tissue have been major bottlenecks in the design of precision nanomedicine. Herein, a tumor-specific and multiple-stimuli responsive nano-riceball is proposed and validated for enhanced sono-chemotherapy. The nano-riceball (NGR@DDP) possesses a well-designed core-shell structure, formed by an inner core assembly that contains ultrasound/H2 O2 responsive bottlebrush-like unimolecular dextran-POEGMA9 -b-PMTEMA22 (DOS) with co-loaded doxorubicin and Purpurin 18. This inner core of NGR@DDP is further buried by a "striffen" of NGR (Asn-Gly-Arg)-modified RBC-membrane derived from CRISPR-engineered mice. As a result, nano-riceball NGR@DDP is featured with high drug stuffing content (30.3 wt%), low critical micelle concentration (5.93 µg mL-1 ), and intelligent exogenous ultrasound/endogenous H2 O2 stimuli-triggered precise drug release at tumor site. Under fluorescence/photoacoustic imaging guidance, combined sonodynamic therapy and chemotherapy exhibit excellent synergistic effect, and dramatically inhibit the growth of orthotopic HepG2 hepatocellular carcinoma with negligible side effects. This nano-riceball strategy provides a facile way to achieve function hybridization for personalized nanomedicine.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ye Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhigang Xu
- School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
Brzeziński M, Socka M, Makowski T, Kost B, Cieślak M, Królewska-Golińska K. Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids Surf B Biointerfaces 2021; 201:111598. [PMID: 33618081 DOI: 10.1016/j.colsurfb.2021.111598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
This study was aimed towards the development of a novel microfluidic approach for the preparation of (co)polymeric and hybrid nanoparticles (NPs) composed of (co)polymers/tannic acid (TA) in the microfluidic flow-focusing glass-capillary device. The MiliQ water was used as water phase, whereas the organic phase was composed of poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers and (co)polymers with different proportion of comonomers which were prepared via enzymatic polymerization that allows avoiding the usage of potentially toxic catalyst. To prepare hybrid NPs, TA was additionally added to the organic phase. Subsequently, as a result of mixing between these distinct phases in microfluidic channels, the nanoprecipitation in the form of spherical NPs occurs. The size of NPs was tuned over the range of 140-230 nm by controlling phase flow rates and the composition of NPs. Moreover, the release studies of the encapsulated anticancer drug doxorubicin (DOX) demonstrated that the drug release is greatly influenced by the (co)polymers composition, their molecular weight, NPs size, and the presence of TA. The antitumor activities of the (co)polymeric and hybrid NPs toward breast cancer cells (MCF-7) were tested in vitro. Among all tested formulation, the NPs composed of PCL/TA most efficiently inhibit the cell proliferation of MCF-7 cells, most importantly, their efficiency was higher than free DOX. The proposed strategy may provide an efficient alternative for the construction of nanocarriers with great potential in anticancer therapy.
Collapse
Affiliation(s)
- Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Marta Socka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
13
|
Raveendran RL, Anirudhan TS. Development of macroscopically ordered liquid crystalline hydrogels from biopolymers with robust antibacterial activity for controlled drug delivery applications. Polym Chem 2021. [DOI: 10.1039/d1py00610j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Macroscopically ordered liquid crystalline hydrogel with antibacterial activity for controlled drug delivery applications.
Collapse
|
14
|
El Jundi A, Morille M, Bettache N, Bethry A, Berthelot J, Salvador J, Hunger S, Bakkour Y, Belamie E, Nottelet B. Degradable double hydrophilic block copolymers and tripartite polyionic complex micelles thereof for small interfering ribonucleic acids (siRNA) delivery. J Colloid Interface Sci 2020; 580:449-459. [PMID: 32711196 DOI: 10.1016/j.jcis.2020.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
|
15
|
Mandal P, Shunmugam R. Polycaprolactone: a biodegradable polymer with its application in the field of self-assembly study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1831392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Piyali Mandal
- Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
16
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|