1
|
Graham W, Torbett-Dougherty M, Islam A, Soleimani S, Bruce-Tagoe TA, Johnson JA. Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:285. [PMID: 39997849 PMCID: PMC11858650 DOI: 10.3390/nano15040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Cancer continues to be a prominent fatal health issue worldwide, driving the urgent need for more effective treatment strategies. The pressing demand has sparked significant interest in the development of advanced drug delivery systems for chemotherapeutics. The advent of nanotechnology offers a groundbreaking approach, presenting a promising pathway to revolutionize cancer treatment and improve patient outcomes. Nanomedicine-based drug delivery systems have demonstrated the capability of improving the pharmacokinetic properties and accumulation of chemotherapeutic agents in cancer sites while minimizing the adverse side effects. Despite these advantages, most NDDSs exhibit only limited improvement in cancer treatment during clinical trials. The recent development of magnetic nanoparticles (MNPs) for biomedical applications has revealed a potential opportunity to further enhance the performance of NDDSs. The magnetic properties of MNPs can be utilized to increase the targeting capabilities of NDDSs, improve the controlled release of chemotherapeutic agents, and weaken the chemoresistance of tumors with magnetic hyperthermia. In this review, we will explore recent advancements in research for NDDSs for oncology applications, how MNPs and their properties can augment the capabilities of NDDSs when complexed with them and emphasize the challenges and safety concerns of incorporating these systems into cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacqueline Ann Johnson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (W.G.); (M.T.-D.); (A.I.); (S.S.); (T.A.B.-T.)
| |
Collapse
|
2
|
Zhang J, Fu K, Wang D, Zhou S, Luo J. Refining hydrogel-based sorbent design for efficient toxic metal removal using machine learning-Bayesian optimization. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135688. [PMID: 39236540 DOI: 10.1016/j.jhazmat.2024.135688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Hydrogel-based sorbents show promise in the removal of toxic metals from water. However, optimizing their performance through conventional trial-and-error methods is both costly and challenging due to the inherent high-dimensional parameter space associated with complex condition combinations. In this study, machine learning (ML) was employed to uncover the relationship between the fabrication condition of hydrogel sorbent and their efficiency in removing toxic metals. The developed XGBoost models demonstrated exceptional accuracy in predicting hydrogel adsorption coefficients (Kd) based on synthesis materials and fabrication conditions. Key factors such as reaction temperature (50-70 °C), time (5-72 h), initiator ((NH4)2S2O8: 2.3-10.3 mol%), and crosslinker (Methylene-Bis-Acrylamide: 1.5-4.3 mol%) significantly influenced Kd. Subsequently, ten hydrogels were fabricated utilizing these optimized feature combinations based on Bayesian optimization, exhibiting superior toxic metal adsorption capabilities that surpassed existing limits (logKd (Cu): increased from 2.70 to 3.06; logKd (Pb): increased from 2.76 to 3.37). Within these determined combinations, the error range (0.025-0.172) between model predictions and experimental validations for logKd (Pb) indicated negligible disparity. Our research outcomes not only offer valuable insights but also provide practical guidance, highlighting the potential for custom-tailored hydrogel designs to combat specific contaminants, courtesy of ML-based Bayesian optimization.
Collapse
Affiliation(s)
- Jing Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
3
|
Kumar N, Nakaji-Hirabayashi T, Kato M, Matsumura K, Rajan R. Design of Highly Selective Zn-Coordinated Polyampholyte for Cancer Treatment and Inhibition of Tumor Metastasis. Biomacromolecules 2024; 25:1481-1490. [PMID: 38343080 DOI: 10.1021/acs.biomac.3c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Developing anticancer agents with negligible cytotoxicity against normal cells while mitigating multidrug resistance and metastasis is challenging. Previously reported cationic polymers have effectively eradicated cancers but are clinically unsuitable due to their limited selectivity. Herein, a series of poly(l-lysine)- and nicotinic acid-based polymers were synthesized using varying amounts of dodecylsuccinic anhydride. Zn-coordinating polymers concealed their cationic charge and enhanced selectivity. These Zn-bound polymers were highly effective against liver and colon cancer cells (HepG2 and Colon 26, respectively) and prevented cancer cell migration. They also displayed potent anticancer activity against drug-resistant cell lines (COR-L23/R): their cationic structure facilitated cancer cell membrane disruption. Compared to these polymers, doxorubicin was less selective and less efficacious against drug-resistant cell lines and was unable to prevent cell migration. These polymers are potential cancer treatment agents, offering a promising solution for mitigating drug resistance and tumor metastasis and representing a novel approach to designing cancer therapeutics.
Collapse
Affiliation(s)
- Nishant Kumar
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tadashi Nakaji-Hirabayashi
- Faculty of Engineering, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Moe Kato
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
4
|
Verma Y, Sharma G, Kumar A, Dhiman P, Si C, Stadler FJ. Synthesizing pectin-crosslinked gum ghatti hydrogel for efficient adsorptive removal of malachite green. Int J Biol Macromol 2024; 258:128640. [PMID: 38061515 DOI: 10.1016/j.ijbiomac.2023.128640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Pectin-crosslinked gum ghatti hydrogel (PGH) has been synthesized utilizing pectin and gum ghatti through an uncomplicated and inexpensive copolymerization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM-elemental mapping), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) characterization techniques have been employed to determine various structural, chemical and compositional characteristics of fabricated PGH. Three different weight ratios (1:1, 2:1, or 1:2 for pectin and gum ghatti, respectively) were employed to synthesize three distinct types of PGH. Swelling studies has been done to determine the best ratios for PGH fabrication. PGH has been assessed as an adsorbent for the removal of malachite green dye from aqueous solutions. The effects of PGH dosage (100-400 mg/L), dye concentration (10-160 mg/L), pH (2-9 pH), adsorption time (0-480 min), and temperature (25-55 °C) has been examined through batch solutions. According to Langmuir isotherm analysis, the maximum adsorption capacity is 658.1 mg/g. By using pseudo-second-order kinetics and the Freundlich adsorption isotherm, the adsorption process could be well explained. After five consecutive cycles, PGH had an adsorption percentage of 86.917 % for the malachite green dye. It is safe for the environment and may be used to remove malachite green (MG) dye from aqueous solutions.
Collapse
Affiliation(s)
- Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
5
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
6
|
Kumar N, Singh S, Sharma P, Kumar B, Kumar A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels 2024; 10:61. [PMID: 38247784 PMCID: PMC10815403 DOI: 10.3390/gels10010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
In recent years, stimuli-responsive nanogels that can undergo suitable transitions under endogenous (e.g., pH, enzymes and reduction) or exogenous stimuli (e.g., temperature, light, and magnetic fields) for on-demand drug delivery, have received significant interest in biomedical fields, including drug delivery, tissue engineering, wound healing, and gene therapy due to their unique environment-sensitive properties. Furthermore, these nanogels have become very popular due to some of their special properties such as good hydrophilicity, high drug loading efficiency, flexibility, and excellent biocompatibility and biodegradability. In this article, the authors discuss current developments in the synthesis, properties, and biomedical applications of stimulus-responsive nanogels. In addition, the opportunities and challenges of nanogels for biomedical applications are also briefly predicted.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India
| | - Sauraj Singh
- College of Pharmacy, Gachon University, Incheon 13120, Republic of Korea;
| | - Piyush Sharma
- Department of Zoology, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India;
| | - Bijender Kumar
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea;
| | - Anuj Kumar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Badparvar F, Marjani AP, Salehi R, Ramezani F. pH/redox responsive size-switchable intelligent nanovehicle for tumor microenvironment targeted DOX release. Sci Rep 2023; 13:22475. [PMID: 38110480 PMCID: PMC10728153 DOI: 10.1038/s41598-023-49446-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Tumor microenvironment (TME) targeted strategy could control the drug release in tumor cells more accurately and creates a new opportunity for enhanced site-specific targeted delivery. In this study, (PAA-b-PCL-S-S-PCL-b-PAA) copolymeric nanoparticles (NPs) with size-switchable ability and dual pH/redox-triggered drug release behavior were designed to significantly promote cancer uptake (cell internalization of around 100% at 30 min) and site-specific targeted doxorubicin (DOX) delivery in MDA-MB-231 tumor cells. NPs surface charge was shifted from - 17.8 to - 2.4 and their size shrunk from 170.3 to 93 nm in TME. The cell cycle results showed that DOX-loaded NPs showed G2/M (68%) arrest, while free DOX showed sub-G1 arrest (22%). Apoptosis tests confirmed that the cells treated with DOX-loaded NPs showed a higher amount of apoptosis (71.6%) than the free DOX (49.8%). Western blot and RT-PCR assays revealed that the apoptotic genes and protein levels were significantly upregulated using the DOX-loaded NPs vs. the free DOX (Pvalue < 0.001). In conclusion, dual pH/redox-responsive and size-switchable DOX-loaded NPs developed here showed outstanding anti-tumoral features compared with free DOX that might present a prospective platform for tumor site-specific accumulation and drug release that suggest further in vivo research.
Collapse
Affiliation(s)
- Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, Chen Y. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023; 643:123222. [PMID: 37454829 DOI: 10.1016/j.ijpharm.2023.123222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The quality of life is significantly impacted by colon-related diseases. There have been a lot of interest in the oral colon-specific drug delivery system (OCDDS) as a potential carrier to decrease systemic side effects and protect drugs from degradation in the upper gastrointestinal tract (GIT). Hydrogels are effective oral colon-targeted drug delivery carriers due to their high biodegradability, substantial drug loading, and great biocompatibility. Natural polysaccharides give the hydrogel system unique structure and function to effectively respond to the complex environment of the GIT and deliver drugs to the colon. In this paper, the physiological factors of colonic drug delivery and the pathological characteristics of common colonic diseases are summarized, and the latest advances in the design, preparation and characterization of natural polysaccharide hydrogels are reviewed, which are expected to provide new references for colon-targeted oral hydrogel systems using natural polysaccharides as raw materials.
Collapse
Affiliation(s)
- Dingding Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuang Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
10
|
Wang HX, Zhao XY, Jiang JQ, Liu ZT, Liu ZW, Li G. Thermal-Responsive Hydrogel Actuators with Photo-Programmable Shapes and Actuating Trajectories. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51244-51252. [PMID: 36397310 DOI: 10.1021/acsami.2c11514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermal-responsive hydrogel actuators have aroused a wide scope of research interest and have been extensively studied. However, their actuating behaviors are usually monotonous due to their unchangeable shapes and structures. Here, we report thermal-responsive poly(isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate)/alginate hydrogels with programmable external shapes and internal actuating trajectories. The volume phase transition temperatures of the resulting hydrogels can be tuned in a wide temperature range from 32 to above 50 °C by adjusting the monomer composition. While the formation and photo-dissociation of Fe3+-carboxylate tri-coordinates within the entire hydrogel network enable photo-responsive shape memory property, the insufficient dissociation of the tri-coordinates along the irradiation path gives rise to gradient crosslinking for realizing thermal-responsive actuation. Controlling the evolution of the gradient structure facilitates the regulation of the actuating amplitude. Furthermore, we show that the combination of these two types of shape-changing functionalities leads to more flexible and intricate shape-changing behaviors. One interesting application, a programmable hook with changeable actuating behaviors for lifting different objects with specific shapes, is also demonstrated. The proposed strategy can be extended to other types of actuating hydrogels with more advanced actuating behaviors.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Xin-Yu Zhao
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Jin-Qiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| |
Collapse
|
11
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
12
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers (Basel) 2022; 14:2963. [PMID: 35890738 PMCID: PMC9322801 DOI: 10.3390/polym14142963] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.
Collapse
Affiliation(s)
- Chad A. Caraway
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- NIH-Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizabeth E. Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- University of Mississippi School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anita Kalluri
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Navya Kunadi
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Betty M. Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| |
Collapse
|
13
|
Zhang Y, Fan G, Jiang J, Liu Z, Liu Z, Li G. Light-Guided Growth of Gradient Hydrogels with Programmable Geometries and Thermally Responsive Actuations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29188-29196. [PMID: 35709501 DOI: 10.1021/acsami.2c04679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel actuators have gained considerable interest and experienced significant advancements in recent years. However, the programming of their actuating behaviors is still challenging. Herein, we report the development and regulation of gradient structures of hydrogels for programmable thermally responsive actuating behaviors. The hydrogel actuators are developed by controlling the photoreduction of Fe3+ ions coordinated with carboxylate groups from the substrates and their limited diffusion into the precursor solutions to act as both initiators and crosslinkers. The developed hydrogels show well-defined external geometries and controllable thicknesses under spatiotemporal control of ultraviolet irradiation. The shapes and the actuation amplitudes of the hydrogel actuators can be independently regulated by controlling the formation and photodissociation of Fe3+-carboxylate coordination in the formed gradient networks. Some interesting applications such as the lifting of an object with a specific shape and directional walking are realized. The proposed method can be extended to other hydrogel actuators with different compositions and stimuli-responsive behaviors.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Guanglin Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhaotie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhongwen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| |
Collapse
|
14
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Deng G, Wu Y, Song Z, Li S, Du M, Deng J, Xu Q, Deng L, Bahlol HS, Han H. Tea Polyphenol Liposomes Overcome Gastric Mucus to Treat Helicobacter Pylori Infection and Enhance the Intestinal Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13001-13012. [PMID: 35266695 DOI: 10.1021/acsami.1c23342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infection with Helicobacter pylori (Hp) is one of the leading causes of stomach cancer. The ability to treat Hp infection is hampered by a lack of stomach gastric acid environment. This work introduces a nanoliposome that can rapidly adjust the gastric acid environment to ensure a drug's optimal efficacy. We introduce CaCO3@Fe-TP@EggPC nanoliposomes (CTE NLs) that are composed of Fe3+ and tea polyphenols (TPs) forming complexes on the surface of internal CaCO3 and then with lecithin producing a phospholipid bilayer on the polyphenols' outer surface. Through the action of iron-TP chelate, the phospholipid layer can fuse with the bacterial membrane to eliminate Hp. Furthermore, CaCO3 can promptly consume the excessive gastric acid, ensuring an ideal operating environment for the chelate. TPs, on the other hand, can improve the inflammation and gut microbes in the body. The experimental results show that CTE NLs can quickly consume protons in the stomach and reduce the bacterial burden by 1.2 orders of magnitude while reducing the inflammatory factors in the body. The biosafety evaluation revealed that nanoliposomes have good biocompatibility and provide a new strategy for treating Hp infection.
Collapse
Affiliation(s)
- Guiyun Deng
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Wu
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| | - Shuojun Li
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Moqing Du
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Deng
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Xu
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Deng
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Hagar Shendy Bahlol
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Heyou Han
- State Key Laboratory of Agriculture Microbiology, College of Life Science and Technology Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agriculture Microbiology, College of Science Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Wang H, Liu Z, Liu Z, Jiang J, Li G. Photo-Dissociable Fe 3+-Carboxylate Coordination: A General Approach toward Hydrogels with Shape Programming and Active Morphing Functionalities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59310-59319. [PMID: 34865479 DOI: 10.1021/acsami.1c19458] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An extendable double network design for hydrogels with programmable external geometries and actuating trajectories is presented. Chemically cross-linked polyacrylamide as the first network penetrated with linear alginate chains is prepared for demonstration. The coordination of Fe3+ ions with carboxylate groups in alginate chains acts as the second network, and its dissociation through photoreduction is utilized to realize the photoresponsive shape memory property; the shape fixity ratio and shape recovery ratio both exceed 90%. The gradient dissociation of Fe3+-carboxylate coordination under UV facilitates 3D programming of hydrogel geometry. On another aspect, the resulted cross-linking gradient differentiates the extent and rate of solvent-induced volume change of the PAAm network, endowing the hydrogel with photo-programmable solvent-driven actuating behavior. Furthermore, by inducing the formation of Fe3+-carboxylate coordination within the entire network for shape programming and cross-linking gradients in specific regions as active joints, hydrogels with designed actuating behaviors based on specific 3D shapes are realized. The shape memory and active morphing functionalities enabled by photo-dissociable Fe3+-carboxylate coordination in PAAm hydrogel can be generally extended to other hydrogels.
Collapse
Affiliation(s)
- Hanxiao Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhaotie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhongwen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| |
Collapse
|
17
|
Panja S, Siehr A, Sahoo A, Siegel RA, Shen W. Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules 2021; 23:163-173. [PMID: 34898190 DOI: 10.1021/acs.biomac.1c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and biocompatible elastomers are highly desirable for many biomedical applications. Here, we report synthesis and characterization of poly(ε-caprolactone)-co-poly(β-methyl-δ-valerolactone)-co-poly(ε-caprolactone) (PCL-PβMδVL-PCL) elastomers. These materials have strain to failure values greater than 1000%. Tensile set measurements according to an ASTM standard revealed a 98.24% strain recovery 10 min after the force was removed and complete strain recovery 40 min after the force was removed. The PβMδVL midblock is amorphous with a glass-transition temperature of -51 °C, and PCL end blocks are semicrystalline and have a melting temperature in the range of 52-55 °C. Due to their thermoplastic nature and the low melting temperature, these elastomers can be readily processed by printing, extrusion, or hot-pressing at 60 °C. Lysozyme, a model bioactive agent, was incorporated into a PCL-PβMδVL-PCL elastomer through melt blending in an extruder, and the blend was further hot-pressed into films; both processing steps were performed at 60 °C. No loss of lysozyme bioactivity was observed. PCL-PβMδVL-PCL elastomers are as cytocompatible as tissue culture polystyrene in supporting cell viability and cell growth, and they are degradable in aqueous environments through hydrolysis. The degradable, cytocompatible, elastomeric, and thermoplastic properties of PCL-PβMδVL-PCL polymers collectively render them potentially valuable for many applications in the biomedical field, such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Biodegradable PCL-b-PLA Microspheres with Nanopores Prepared via RAFT Polymerization and UV Photodegradation of Poly(Methyl Vinyl Ketone) Blocks. Polymers (Basel) 2021; 13:polym13223964. [PMID: 34833263 PMCID: PMC8622187 DOI: 10.3390/polym13223964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
Biodegradable triblock copolymers based on poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) were synthesized via ring-opening polymerization of L-lactide followed by reversible addition–fragmentation chain-transfer (RAFT) polymerization of poly(methyl vinyl ketone) (PMVK) as a photodegradable block, and characterized by FT-IR and 1H NMR spectroscopy for structural analyses, and by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) for their thermal properties. Porous, biodegradable PCL-b-PLA microspheres were fabricated via the oil/water (O/W) emulsion evaporation method, followed by photodegradation of PMVK blocks by UV irradiation. The macro-chain transfer agent (CTA) synthesized by reacting a carboxylic-acid-terminated CTA—S-1-dodecyl-S′-(a,a′-dimethyl-a′′-acetic acid)trithiocarbonate (DDMAT)—with a hydroxyl-terminated PCL-b-PLA block copolymer was used to synthesize well-defined triblock copolymers with methyl vinyl ketone via RAFT polymerization with controlled molecular weights and narrow polydispersity. Gel permeation chromatography traces indicated that the molecular weight of the triblock copolymer decreased with UV irradiation time because of the photodegradation of the PMVK blocks. The morphology of the microspheres before and after UV irradiation was investigated using SEM and videos of three-dimensional confocal laser microscopy, showing a change in their surface texture from smooth to rough, with high porosity owing to the photodegradation of the PMVK blocks to become porous templates.
Collapse
|
19
|
Safari JB, Bapolisi AM, Krause RWM. Development of pH-Sensitive Chitosan- g-poly(acrylamide- co-acrylic acid) Hydrogel for Controlled Drug Delivery of Tenofovir Disoproxil Fumarate. Polymers (Basel) 2021; 13:polym13203571. [PMID: 34685332 PMCID: PMC8541207 DOI: 10.3390/polym13203571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
The present study aimed to develop a pH-sensitive chitosan-based hydrogel for controlled delivery of an anti-hepatitis B drug, tenofovir disoproxil fumarate (TDF). Free radical polymerization was utilized to graft acrylamide and acrylic acid using N,N-methylene bisacrylamide as the crosslinker. Physicochemical characterization confirmed the synthesis of thermally stable chitosan-g-poly(acrylamide-co-acrylic acid) hydrogels with well-defined pores within a fibrous surface. The prepared hydrogels exhibited pH and ionic strength sensitivity, with the swelling significantly lower under acidic and strong ionic strength conditions but higher in neutral and basic solutions. In addition, cytotoxicity studies on HeLa cell lines proved the cytocompatibility of the drug delivery material and its readiness for physiological applications. The encapsulation of TDF in the hydrogels was optimized and an encapsulation efficiency and a drug loading percentage of 96% and 10% were achieved, respectively. More interestingly, in vitro release studies demonstrated a pH-dependent release of TDF from hydrogels. The release at pH 7.4 was found to be up to five times higher than at pH 1.2 within 96 h. This further suggested that the newly developed hydrogel-loaded TDF could be proposed as a smart delivery system for oral delivery of anti-hepatitis B drugs.
Collapse
Affiliation(s)
- Justin B. Safari
- Department of Chemistry, Faculty of Science, Rhodes University, Makhana 6140, South Africa;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo
- Correspondence: (J.B.S.); (R.W.M.K.)
| | - Alain M. Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhana 6140, South Africa;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, Makhana 6140, South Africa;
- Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University, Makhana 6140, South Africa
- Correspondence: (J.B.S.); (R.W.M.K.)
| |
Collapse
|
20
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
21
|
Eid M, Sobhy R, Zhou P, Wei X, Wu D, Li B. β-cyclodextrin- soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Panja S, Hanson S, Wang C. EDTA-Inspired Polydentate Hydrogels with Exceptionally High Heavy Metal Adsorption Capacity as Reusable Adsorbents for Wastewater Purification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25276-25285. [PMID: 32383581 DOI: 10.1021/acsami.0c03689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water pollution by heavy metal ions is a critical threat to public health. To remove the heavy metal pollutants from large waterbodies, we have synthesized a biocompatible, cost-effective, metal ion non-specific, and ethylenediaminetetraacetic acid (EDTA)-inspired polydentate hydrogel with exceptionally high adsorption capacity and reusability. The hydrogel was synthesized by the transamidation reaction between hydrolyzed polyacrylamide and branched polyethylenimine (BPEI). The mechanical strength of the synthesized hydrogel displayed an increasing trend with the wt % of the cross-linker (BPEI) and achieved a maximum storage modulus (Gmax') of 1093 Pa. Scanning electron microscopy revealed a porous network structure of the hydrogel (pore size: 30-70 μm), resulting in a very high swelling ratio of 5800%. The porous hydrogel manifested the maximum adsorption capacity of 482.2 mg/g when adsorbing from a mixture of metal ions (Cr3+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+), higher than any EDTA-grafted material known to date. The high adsorption capacity of the hydrogel was attributed to the existence of numerous EDTA-mimicking coordinating functional groups, as confirmed by X-ray photoelectron spectroscopy. In addition, the hydrogel showed the self-healing property and preserved more than 85% adsorption efficiency even after five cycles of reuse. Furthermore, the hydrogels showed no or moderate toxicity toward mammalian cells.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel Hanson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for “on-demand” anticancer drug delivery. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Mandal P, Panja S, Banerjee SL, Ghorai SK, Maji S, Maiti TK, Chattopadhyay S. Magnetic particle anchored reduction and pH responsive nanogel for enhanced intracellular drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
da Silva BATT, Pascoalino LA, de Souza RL, Muniz EC, Curti PS. Characterization of novel thermoresponsive poly(butylene adipate-co-terephthalate)/poly(N-isopropylacrylamide) electrospun fibers. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Li G, Gao T, Fan G, Liu Z, Liu Z, Jiang J, Zhao Y. Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6407-6418. [PMID: 31880155 DOI: 10.1021/acsami.9b19380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new design for photoresponsive shape memory hydrogels and their possible applications are demonstrated in the present study. We show that the photodissociable Fe3+-carboxylate coordination can be utilized as a molecular switch to realize photocontrol of shape memory on both macroscopic and microscopic scales and enable a number of functions. Indeed, Fe3+-carboxylate coordination can fix a large tensile strain (up to 680%) of the sodium alginate/polyacrylamide hydrogel through cross-linking of sodium alginate chains, and subsequent UV irradiation allows strain energy release in spatially selected regions through reduction of Fe3+ to Fe2+. By manipulating light irradiation, complex 3D structures are obtained from 2D hydrogel sheets, and they exhibit complex solvent-driven actuation behaviors due to a light-changeable modulus and cross-linking density in the hydrogel. Based on the same approach, micropatterns can be inscribed on the hydrogel surface using mask-assisted irradiation, and they exhibit chain orientation-mediated anisotropic topography change upon solvent exchange. Moreover, light-controlled strain energy release also enables changing hydrogel surface wettability by solvent replacement. The demonstrated mechanism for photoresponsive hydrogels is highly efficient and applicable to many systems, which offers new perspectives in developing hydrogels with multiple photoresponsive functions.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Tingyu Gao
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Guanglin Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Zhaotie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Zhongwen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Yue Zhao
- Département de chimie , Université de Sherbrooke , Sherbrooke , Québec J1K 2R1 , Canada
| |
Collapse
|
27
|
Esperanza Adrover M, Pedernera M, Bonne M, Lebeau B, Bucalá V, Gallo L. Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate. Saudi Pharm J 2019; 28:15-24. [PMID: 31920429 PMCID: PMC6950956 DOI: 10.1016/j.jsps.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
Albendazole (ABZ, anti-parasitic active pharmaceutical ingredient) is a crystalline low water-soluble drug, thus the dissolution rate in gastrointestinal fluids is limited. Consequently, the improvement of the water solubility and dissolution rate of ABZ implies a great challenge for a more efficient treatment of hydatidosis. In this context, SBA-15 and SBA-16 ordered mesoporous silica materials were synthetized and loaded with ABZ. X-ray diffraction, FT-IR spectroscopy, nitrogen physisorption manometry, particle size distribution and scanning electronic microscopy were used to characterize unloaded and loaded materials (ABZ/SBA-15 and ABZ/SBA-16). The loaded ABZ amount in the carriers was estimated by elemental analysis. For the loaded materials, the drug solubility and release profile were evaluated. In addition, mathematical models were compared to explain the dissolution kinetics of ABZ from mesoporous solids. ABZ was successfully loaded into the mesopores. The amorphous state of the adsorbed ABZ was confirmed by differential scanning calorimetry that resulted in a notable increment in the dissolution rate compared to crystalline ABZ. Drug release behaviors were well simulated by the Weibull model for ABZ/SBA-15 and by the Gompertz function for pure ABZ and ABZ/SBA-16. The SBA-15 carrier exhibited the highest drug loading and dissolution rate becoming a promising material to improve ABZ bioavailability.
Collapse
Affiliation(s)
- María Esperanza Adrover
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Marisa Pedernera
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Magali Bonne
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, 68100 Mulhouse, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Bénédicte Lebeau
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, 68100 Mulhouse, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Verónica Bucalá
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Loreana Gallo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
28
|
Panja S, Bharti R, Dey G, Lynd NA, Chattopadhyay S. Coordination-Assisted Self-Assembled Polypeptide Nanogels to Selectively Combat Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33599-33611. [PMID: 31429277 DOI: 10.1021/acsami.9b10153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present scenario, the invention of bacteria-selective antimicrobial agent comprising negligible toxicity and hemolytic effect is a great challenge. To surmount this challenge, here, a series of polypeptide nanogels (PNGs) have been fabricated by a coordination-assisted self-assembly of a mannose-conjugated antimicrobial polypeptide, poly(arginine-r-valine)-mannose (poly(Arg-r-Val)-M2), with Zn2+ ions. The fabricated PNGs are spherical in shape with a unique structural appearance similar to that of Taxus baccata fruits. PNGs, with a unique structural arrangement and threshold surface charge density, selectively interact with the bacterial membrane and exhibit potent antimicrobial activity, as reflected in their lower minimum inhibitory concentration values (varies from 2 to 16 μg/mL). PNGs show a remarkably high binding constant, 6.02 × 105 M-1 (from isothermal titration calorimetry, ITC), with the bacterial membrane which manifests its potent bactericidal effect. PNGs are nontoxic against mammalian and red blood cells as reflected from their higher cell viability and insignificant hemolytic effect. PNGs are taken up by the bacterial membrane and selectively undergo structural deformation (scrutinized by ITC) followed by an exposure of free poly(Arg-r-Val)-M2 molecules. The free poly(Arg-r-Val)-M2 molecules are enforced to lyse the bacterial membrane (visualized by cryo-transmission electron microscopy) followed by the diffusion of the cytoplasmic component out of the membrane which culminates in the final death of the bacterium.
Collapse
Affiliation(s)
- Sudipta Panja
- McKetta Department of Chemical Engineering, Center for Dynamics and Control of Materials , University of Texas at Austin , Austin , Texas 78712 , United States
| | | | | | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, Center for Dynamics and Control of Materials , University of Texas at Austin , Austin , Texas 78712 , United States
| | | |
Collapse
|
29
|
Mandal P, Maji S, Panja S, Bajpai OP, Maiti TK, Chattopadhyay S. Magnetic particle ornamented dual stimuli responsive nanogel for controlled anticancer drug delivery. NEW J CHEM 2019. [DOI: 10.1039/c8nj04841j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of spherical magneto-responsive nanogels were fabricated by formulating different sets of star block copolymers based on pentaerythritol–poly(ε-caprolactone)-b-poly(acrylic acid) (PE–PCL-b-PAA) combined with amine-functionalized magnetic nanoparticles for targeted cancer therapy.
Collapse
Affiliation(s)
- Pijush Mandal
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Somnath Maji
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sudipta Panja
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Om Prakash Bajpai
- Rubber Technology Centre
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Tapas Kumar Maiti
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | | |
Collapse
|
30
|
Lu D, Zhu M, Wu S, Wang W, Lian Q, Saunders BR. Triply responsive coumarin-based microgels with remarkably large photo-switchable swelling. Polym Chem 2019; 10:2516-2526. [DOI: 10.1039/c9py00233b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Using two different wavelengths of UV light enables remarkably strong photo-switchable swelling of pH- and temperature-responsive microgels and photo-release of doxorubicin.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Mingning Zhu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Shanglin Wu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Wenkai Wang
- School of Materials
- University of Manchester
- Manchester
- UK
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Qing Lian
- School of Materials
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
31
|
Hadaeghnia M, Goharpey F, Khademzadeh Yeganeh J. Characterization and phase‐transition behavior of thermoresponsive PVME nanogels in the presence of cellulose nanowhiskers: Rheology, morphology, and FTIR studies. POLYM ENG SCI 2018. [DOI: 10.1002/pen.25035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Milad Hadaeghnia
- Department of Polymer EngineeringAmirkabir University of Technology 15875‐4413 Tehran Iran
| | - Fatemeh Goharpey
- Department of Polymer EngineeringAmirkabir University of Technology 15875‐4413 Tehran Iran
| | | |
Collapse
|
32
|
Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018; 4:E62. [PMID: 30674838 PMCID: PMC6209281 DOI: 10.3390/gels4030062] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is commonly associated with limited effectiveness and unwanted side effects in normal cells and tissues, due to the lack of specificity of therapeutic agents to cancer cells when systemically administered. In brain tumors, the existence of both physiological barriers that protect tumor cells and complex resistance mechanisms to anticancer drugs are additional obstacles that hamper a successful course of chemotherapy, thus resulting in high treatment failure rates. Several potential surrogate therapies have been developed so far. In this context, hydrogel-based systems incorporating nanostructured drug delivery systems (DDS) and hydrogel nanoparticles, also denoted nanogels, have arisen as a more effective and safer strategy than conventional chemotherapeutic regimens. The former, as a local delivery approach, have the ability to confine the release of anticancer drugs near tumor cells over a long period of time, without compromising healthy cells and tissues. Yet, the latter may be systemically administered and provide both loading and targeting properties in their own framework, thus identifying and efficiently killing tumor cells. Overall, this review focuses on the application of hydrogel matrices containing nanostructured DDS and hydrogel nanoparticles as potential and promising strategies for the treatment and diagnosis of glioblastoma and other types of brain cancer. Some aspects pertaining to computational studies are finally addressed.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Sandra Nunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| |
Collapse
|
33
|
Preferential hepatic uptake of paclitaxel-loaded poly-(d-l-lactide-co-glycolide) nanoparticles — A possibility for hepatic drug targeting: Pharmacokinetics and biodistribution. Int J Biol Macromol 2018; 112:818-830. [DOI: 10.1016/j.ijbiomac.2018.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/12/2018] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
|
34
|
Park H, Choi Y, Jeena MT, Ahn E, Choi Y, Kang MG, Lee CG, Kwon TH, Rhee HW, Ryu JH, Kim BS. Reduction-Triggered Self-Cross-Linked Hyperbranched Polyglycerol Nanogels for Intracellular Delivery of Drugs and Proteins. Macromol Biosci 2018. [DOI: 10.1002/mabi.201700356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haeree Park
- Department of Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Yeongkyu Choi
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - M. T. Jeena
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Eungjin Ahn
- Department of Energy Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Yuri Choi
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Myeong-Gyun Kang
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Chae Gyu Lee
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Hyun-Woo Rhee
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| | - Byeong-Su Kim
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
- Department of Energy Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Korea
| |
Collapse
|
35
|
Ghosal A, Tiwari S, Mishra A, Vashist A, Rawat NK, Ahmad S, Bhattacharya J. Design and Engineering of Nanogels. NANOGELS FOR BIOMEDICAL APPLICATIONS 2017. [DOI: 10.1039/9781788010481-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogels in the nano regime are termed as nanogels (NGs). The formulation in the nano range renders the synthesis process easy as well as scalable with better control over designing/cross-linking between the NGs. Nanogels have shown controllable swelling, viscoelasticity, and high biocompatibility leading to their use in targeted and stimuli-responsive drug delivery purposes. The designing and engineering of materials plays a pivotal role in accounting for the improvement in the basic properties of the materials and hence, is very important for material scientists. The study of the design and functional characteristics of NGs is the only way to understand their chemical and biological responses in biological models and in turn helps to generate a rationale for development of smart NGs and therapeutic inventions.
Collapse
Affiliation(s)
- Anujit Ghosal
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University Greater Noida, Gautam Buddh Nagar Uttar Pradesh India
- School of Biotechnology, Jawaharlal Nehru University New Delhi-110067 India
- Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Shivani Tiwari
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University Greater Noida, Gautam Buddh Nagar Uttar Pradesh India
| | - Abhijeet Mishra
- Cancer Biology Lab, School of Life Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Arti Vashist
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Neha Kanwar Rawat
- Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Sharif Ahmad
- Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | | |
Collapse
|