1
|
He C, Mao Y, Wan H. In-depth understanding of the structure-based reactive metabolite formation of organic functional groups. Drug Metab Rev 2025; 57:147-189. [PMID: 40008940 DOI: 10.1080/03602532.2025.2472076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a leading cause of drug attrition and/or withdrawal. The formation of reactive metabolites is widely accepted as a key factor contributing to idiosyncratic DILI. Therefore, identifying reactive metabolites has become a critical focus during lead optimization, and a combination of GSH-/cyano-trapping and cytochrome P450 inactivation studies is recommended to identify compounds with the potential to generate reactive metabolites. Daily dose, clinical indication, detoxication pathways, administration route, and treatment duration are the most considerations when deprioritizing candidates that generate reactive metabolites. Removing the structural alerts is considered a pragmatic strategy for mitigating the risk associated with reactive metabolites, although this approach may sometimes exclude otherwise potent molecules. In this context, an in-depth insight into the structure-based reactive metabolite formation of organic functional groups can significantly aid in the rational design of drug candidates with improved safety profiles. The primary goal of this review is to delve into an analysis of the bioactivation mechanisms of organic functional groups and their potential detrimental effects with recent examples to assist medicinal chemists and metabolism scientists in designing safer drug candidates with a higher likelihood of success.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hong Wan
- WHDex Consulting AB, Mölndal, Sweden
| |
Collapse
|
2
|
Robbins DW, Noviski MA, Tan YS, Konst ZA, Kelly A, Auger P, Brathaban N, Cass R, Chan ML, Cherala G, Clifton MC, Gajewski S, Ingallinera TG, Karr D, Kato D, Ma J, McKinnell J, McIntosh J, Mihalic J, Murphy B, Panga JR, Peng G, Powers J, Perez L, Rountree R, Tenn-McClellan A, Sands AT, Weiss DR, Wu J, Ye J, Guiducci C, Hansen G, Cohen F. Discovery and Preclinical Pharmacology of NX-2127, an Orally Bioavailable Degrader of Bruton's Tyrosine Kinase with Immunomodulatory Activity for the Treatment of Patients with B Cell Malignancies. J Med Chem 2024; 67:2321-2336. [PMID: 38300987 DOI: 10.1021/acs.jmedchem.3c01007] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR signaling is a hallmark of many hematological malignancies, which makes it an attractive therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-proven strategy for the treatment of patients with these malignancies. We report the discovery and characterization of NX-2127, a BTK degrader with concomitant immunomodulatory activity. By design, NX-2127 mediates the degradation of transcription factors IKZF1 and IKZF3 through molecular glue interactions with the cereblon E3 ubiquitin ligase complex. NX-2127 degrades common BTK resistance mutants, including BTKC481S. NX-2127 is orally bioavailable, exhibits in vivo degradation across species, and demonstrates efficacy in preclinical oncology models. NX-2127 has advanced into first-in-human clinical trials and achieves deep and sustained degradation of BTK following daily oral dosing at 100 mg.
Collapse
Affiliation(s)
- Daniel W Robbins
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Mark A Noviski
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ying Siow Tan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Zef A Konst
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Aileen Kelly
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Paul Auger
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Nivetha Brathaban
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Robert Cass
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ming Liang Chan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ganesh Cherala
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Matthew C Clifton
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Stefan Gajewski
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Timothy G Ingallinera
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Dane Karr
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Daisuke Kato
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jun Ma
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jenny McKinnell
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Joel McIntosh
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jeff Mihalic
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Brent Murphy
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jaipal Reddy Panga
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ge Peng
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Janine Powers
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Luz Perez
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ryan Rountree
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Austin Tenn-McClellan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Arthur T Sands
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Dahlia R Weiss
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jeffrey Wu
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jordan Ye
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Cristiana Guiducci
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Gwenn Hansen
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Frederick Cohen
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| |
Collapse
|
3
|
Saldívar-González FI, Navarrete-Vázquez G, Medina-Franco JL. Design of a multi-target focused library for antidiabetic targets using a comprehensive set of chemical transformation rules. Front Pharmacol 2023; 14:1276444. [PMID: 38027021 PMCID: PMC10651762 DOI: 10.3389/fphar.2023.1276444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Virtual small molecule libraries are valuable resources for identifying bioactive compounds in virtual screening campaigns and improving the quality of libraries in terms of physicochemical properties, complexity, and structural diversity. In this context, the computational-aided design of libraries focused against antidiabetic targets can provide novel alternatives for treating type II diabetes mellitus (T2DM). In this work, we integrated the information generated to date on compounds with antidiabetic activity, advances in computational methods, and knowledge of chemical transformations available in the literature to design multi-target compound libraries focused on T2DM. We evaluated the novelty and diversity of the newly generated library by comparing it with antidiabetic compounds approved for clinical use, natural products, and multi-target compounds tested in vivo in experimental antidiabetic models. The designed libraries are freely available and are a valuable starting point for drug design, chemical synthesis, and biological evaluation or further computational filtering. Also, the compendium of 280 transformation rules identified in a medicinal chemistry context is made available in the linear notation SMIRKS for use in other chemical library enumeration or hit optimization approaches.
Collapse
Affiliation(s)
- Fernanda I. Saldívar-González
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - José L. Medina-Franco
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Yan G, Rose J, Ellison C, Mudd AM, Zhang X, Wu S. Refine and Strengthen SAR-Based Read-Across by Considering Bioactivation and Modes of Action. Chem Res Toxicol 2023; 36:1532-1548. [PMID: 37594911 PMCID: PMC10523590 DOI: 10.1021/acs.chemrestox.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/20/2023]
Abstract
Structure-activity relationship (SAR)-based read-across is an important and effective method to establish the safety of a data-poor target chemical (structure of interest (SOI)) using hazard data from structurally similar source chemicals (analogues). Many methods use quantitative similarity scores to evaluate the structural similarity for searching and selecting analogues as well as for evaluating analogue suitability. However, studies suggest that read-across based purely on structural similarity cannot accurately predict the toxicity of an SOI. As mechanistic data become available, we gain a greater understanding of the mode of action (MOA), the relationship between structures and metabolism/bioactivation pathways, and the existence of "activity cliffs" in chemical chain length, which can improve the analogue rating process. For this purpose, the current work identifies a series of classes of chemicals where a small change at a key position can result in a significant change in metabolism and bioactivation pathways and may eventually result in significant changes in chemical toxicity that have a big impact on the suitability of analogues for read-across. Additionally, a series of SAR-based read-across case studies are presented, which cover a variety of chemical classes that commonly link to different toxic endpoints. The case study results indicate that SAR-based read-across can be refined and strengthened by considering MOAs or proposed reactive metabolite formation pathways, which can improve the overall accuracy, consistency, transparency, and confidence in evaluating analogue suitability.
Collapse
Affiliation(s)
- Gang Yan
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Jane Rose
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Corie Ellison
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Ashley M. Mudd
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Xiaoling Zhang
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Shengde Wu
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| |
Collapse
|
5
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
6
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
7
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
8
|
Khojasteh SC, Argikar UA, Driscoll JP, Heck CJS, King L, Jackson KD, Jian W, Kalgutkar AS, Miller GP, Kramlinger V, Rietjens IMCM, Teitelbaum AM, Wang K, Wei C. Novel advances in biotransformation and bioactivation research - 2020 year in review. Drug Metab Rev 2021; 53:384-433. [PMID: 33910427 PMCID: PMC8826528 DOI: 10.1080/03602532.2021.1916028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This annual review is the sixth of its kind since 2016 (see references). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation and bioactivation. These fields are constantly evolving with new molecular structures and discoveries of corresponding pathways for metabolism that impact relevant drug development with respect to efficacy and safety. Based on the selected articles, we created three sections: (1) drug design, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation and safety (Table 1). Unlike in years past, more biotransformation experts have joined and contributed to this effort while striving to maintain a balance of authors from academic and industry settings.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia, Inc., South San Francisco, CA, USA
| | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Lloyd King
- Department of DMPK, UCB Biopharma, Slough, UK
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Wenying Jian
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Spring House, PA, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Valerie Kramlinger
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | | | - Aaron M Teitelbaum
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Kai Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, San Diego, CA, USA
| | - Cong Wei
- Drug Metabolism & Pharmacokinetics, Biogen Inc., Cambridge, MA, USA
| |
Collapse
|
9
|
Flynn NR, Ward MD, Schleiff MA, Laurin CMC, Farmer R, Conway SJ, Boysen G, Swamidass SJ, Miller GP. Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors. Metabolites 2021; 11:metabo11060390. [PMID: 34203690 PMCID: PMC8232216 DOI: 10.3390/metabo11060390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD’s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads.
Collapse
Affiliation(s)
- Noah R. Flynn
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Michael D. Ward
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Mary A. Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | | | - Rohit Farmer
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Stuart J. Conway
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; (C.M.C.L.); (S.J.C.)
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
- Correspondence: (S.J.S.); (G.P.M.)
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence: (S.J.S.); (G.P.M.)
| |
Collapse
|
10
|
Crawford JJ, Lee W, Johnson AR, Delatorre KJ, Chen J, Eigenbrot C, Heidmann J, Kakiuchi-Kiyota S, Katewa A, Kiefer JR, Liu L, Lubach JW, Misner D, Purkey H, Reif K, Vogt J, Wong H, Yu C, Young WB. Stereochemical Differences in Fluorocyclopropyl Amides Enable Tuning of Btk Inhibition and Off-Target Activity. ACS Med Chem Lett 2020; 11:1588-1597. [PMID: 32832028 DOI: 10.1021/acsmedchemlett.0c00249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is thought to play a pathogenic role in chronic immune diseases such as rheumatoid arthritis and lupus. While covalent, irreversible Btk inhibitors are approved for treatment of hematologic malignancies, they are not approved for autoimmune indications. In efforts to develop additional series of reversible Btk inhibitors for chronic immune diseases, we sought to differentiate from our clinical stage inhibitor fenebrutinib using cyclopropyl amide isosteres of the 2-aminopyridyl group to occupy the flat, lipophilic H2 pocket. While drug-like properties were retained-and in some cases improved-a safety liability in the form of hERG inhibition was observed. When a fluorocyclopropyl amide was incorporated, Btk and off-target activity was found to be stereodependent and a lead compound was identified in the form of the (R,R)- stereoisomer.
Collapse
Affiliation(s)
- James J. Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Lee
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Adam R. Johnson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly J. Delatorre
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jacob Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Eigenbrot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Julia Heidmann
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Arna Katewa
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James R. Kiefer
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lichuan Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W. Lubach
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dinah Misner
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Purkey
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karin Reif
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jennifer Vogt
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Harvey Wong
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy B. Young
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|