1
|
Wu N, He Y, Sun Z, Zhang S, Yang X, Liu QS, Zhou Q, Jiang G. The environmental occurrence, human exposure, and toxicity of novel bisphenol S derivatives: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118182. [PMID: 40222108 DOI: 10.1016/j.ecoenv.2025.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Novel bisphenol S (BPS) derivatives are being increasingly utilized as substitutes to bisphenol A (BPA) and BPS in thermal receipts and other industrial or commercial products. In recent years, the environmental occurrence, human exposure, and toxicity of non-chlorinated and chlorinated BPS derivatives have been investigated in numerous studies. This review summarizes the state-of-art and new knowledge on these aspects and provides recommendations for future research directions. The environmental analysis showed that BPS derivatives have been widely detected in paper products, water, indoor dust, sediment, and municipal sewage sludge. Recent studies have also reported the presence of non-chlorinated BPS derivatives, such as benzenesulfonylbenzene (DDS) and 4-(4-propan-2-yloxyphenyl)sulfonylphenol (BPSIP), in human breast milk, urine, and the maternal-fetal-placental unit. Toxicological studies suggest that BPS derivatives may cause a series of toxic effects, including endocrine-disrupting effects, cytotoxicity, hepatotoxicity, developmental toxicity, and neurotoxicity, some of which have been shown to exhibit adverse effects similar to or even greater than those of BPS. Future studies should focus on elucidating environmental occurrences, half-lives, sources for human exposure, and potential transformation pathways of BPS derivatives, as well as their toxic effects and underlying mechanisms.
Collapse
Affiliation(s)
- Ning Wu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024; 54:696-753. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Zhang S, Zhou Y, Shen J, Wang Y, Xia J, Li C, Liu W, Hayat K, Qian M. Early-Life Exposure to 4-Hydroxy-4'-Isopropoxydiphenylsulfone Induces Behavioral Deficits Associated with Autism Spectrum Disorders in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15984-15996. [PMID: 39194383 DOI: 10.1021/acs.est.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exposure to bisphenol A (BPA) during gestation and lactation is considered to be a potential risk factor for autism spectrum disorder (ASD) in both humans and animals. As a novel alternative to BPA, 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP) is frequently detected in breast milk and placental barrier systems, suggesting potential transmission from the mother to offspring and increased risk of exposure. Gestation and lactation are critical periods for central nervous system development, which are vulnerable to certain environmental pollutants. Herein, we investigated the behavioral impacts and neurobiological effects of early-life exposure to BPSIP (0.02, 0.1, and 0.5 mg/kg body weight/day) in mice offspring. Behavioral studies indicated that BPSIP exposure induced ASD-like behaviors, including elevated anxiety-related behavior and decreased spatial memory, in both male and female pups. A distinct pattern of reduced social novelty was observed only in female offspring, accompanied by significant alterations in antioxidant levels. Transcriptome analysis demonstrated that differentially expressed genes (DEGs) were mainly enriched in pathways related to behaviors and neurodevelopment, which were consistent with the observed phenotype. Besides, a decrease in the protein levels of complex IV (COX IV) across all tested populations suggests a profound impact on mitochondrial function, potentially leading to abnormal energy metabolism in individuals with autism. Additionally, changes in synaptic proteins, evidenced by alterations in synapsin 1 (SYN1) and postsynaptic density protein-95 (PSD95) levels in the cerebellum and hippocampus, support the notion of synaptic involvement. These findings suggest that BPSIP may induce sex-specific neurotoxic effects that involve oxidative stress, energy generation, and synaptic plasticity.
Collapse
Affiliation(s)
- Shengnan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yitong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiatong Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yumeng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenghan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
4
|
Franko N, Kodila A, Sollner Dolenc M. Adverse outcomes of the newly emerging bisphenol A substitutes. CHEMOSPHERE 2024; 364:143147. [PMID: 39168390 DOI: 10.1016/j.chemosphere.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Collapse
Affiliation(s)
- Nina Franko
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Kodila
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Jia XX, Yao ZY, Liu S, Gao ZX. Suspension array for multiplex immunoassay of five common endocrine disrupter chemicals. Mikrochim Acta 2021; 188:290. [PMID: 34355262 DOI: 10.1007/s00604-021-04905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/19/2021] [Indexed: 10/20/2022]
Abstract
A low cost and effective indirect competitive method is reported to detect five EDCs, 17-beta-estradiol (E2), estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), and nonylphenol (NP) simultaneously, based on suspension array technology (SAT). Five kinds of complete antigens (E2-BSA, E3-BSA, BPA-BSA, DES-BPA, NP-BSA) were coupled to different encoding microspheres using purpose-made solutions in our laboratory instead of commercially available amino coupling kits; the method was further optimized for determination and reducing the cost. Encoding and signaling fluorescence of the particles are determined at 635/532 nm emission wavelengths. High-throughput curves of five EDCs were draw and the limit of detection (LOD) were between 0.0010 ng mL-1 ~ 0.0070 ng mL-1. Compared with traditional ELISA methods, the SAT exhibited better specificity and sensitivity. Experiments using spiked milk and tap water samples were also carried out, and the recovery was between 85 and 110%; the results also confirmed good repeatability and reproducibility. It illustrated great potential of the present strategy in the detection of EDCs in actual samples.
Collapse
Affiliation(s)
- Xue-Xia Jia
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Zi-Yi Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
6
|
Reale E, Vernez D, Hopf NB. Skin Absorption of Bisphenol A and Its Alternatives in Thermal Paper. Ann Work Expo Health 2021; 65:206-218. [PMID: 33313651 DOI: 10.1093/annweh/wxaa095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Bisphenol A (BPA) is the most used colour developer in thermal paper for cashiers receipts, labels, and tickets. BPA can migrate onto the skin and be absorbed when handling these papers. BPA is a known endocrine disruptor and is therefore being replaced in thermal paper by some alternatives such as Bisphenol S (BPS), D-8, and Pergafast 201® (PF201). To our knowledge, no studies have characterized skin permeation of these BPA alternatives. METHODS We measured/characterized skin absorption for BPA, BPS, D-8, and PF201 through ex vivo human skin using flow-through diffusion cells according to OECD guideline 428. Skin samples were 7-12 per test substance from three different skin donors. Skin metabolism was studied for BPA. Dermal absorption was expressed as the amount of the BPA alternatives in the receptor fluid over applied dose in percent (%). RESULTS The absorbed dose after 24 h of exposure was 25% for BPA, 17% for D-8, 0.4% for BPS, and <LLOQ for PF201. The amount of BPA-glucuronide in the receptor fluid after 24 h was under the limit of quantification (LLOQ = 0.2 µg l-1). Despite the 10-fold lower concentration of the aq solution applied on the skin, D-8's permeation rate JMAX was 5-fold higher than the one for BPS (0.032 versus 0.006 µg cm-2 h-1). Neither D-8 nor BPS permeated readily through the skin (tlag = 3.9 h for D-8, 6.4 h for BPS). None of PF201's skin permeation kinetic parameters could be determined because this BPA analogue was not quantifiable in the receptor fluid in our test conditions. CONCLUSIONS Skin absorption was in decreasing order: BPA > D-8 >> BPS > PF201. These results are in agreement with their log Kow and molecular weights. We provided here the necessary data to estimate the extent of skin absorption of BPA analogues, which is a necessary step in risk assessment, and ultimately evaluate public health risks posed by D-8, BPS, and PF201.
Collapse
Affiliation(s)
- Elena Reale
- Department of Occupational and Environmental Health (DSTE), Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland
| | - David Vernez
- Department of Occupational and Environmental Health (DSTE), Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse 64, 4055 Basel, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health (DSTE), Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse 64, 4055 Basel, Switzerland
| |
Collapse
|
7
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|