1
|
He C, Mao Y, Wan H. In-depth understanding of the structure-based reactive metabolite formation of organic functional groups. Drug Metab Rev 2025; 57:147-189. [PMID: 40008940 DOI: 10.1080/03602532.2025.2472076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a leading cause of drug attrition and/or withdrawal. The formation of reactive metabolites is widely accepted as a key factor contributing to idiosyncratic DILI. Therefore, identifying reactive metabolites has become a critical focus during lead optimization, and a combination of GSH-/cyano-trapping and cytochrome P450 inactivation studies is recommended to identify compounds with the potential to generate reactive metabolites. Daily dose, clinical indication, detoxication pathways, administration route, and treatment duration are the most considerations when deprioritizing candidates that generate reactive metabolites. Removing the structural alerts is considered a pragmatic strategy for mitigating the risk associated with reactive metabolites, although this approach may sometimes exclude otherwise potent molecules. In this context, an in-depth insight into the structure-based reactive metabolite formation of organic functional groups can significantly aid in the rational design of drug candidates with improved safety profiles. The primary goal of this review is to delve into an analysis of the bioactivation mechanisms of organic functional groups and their potential detrimental effects with recent examples to assist medicinal chemists and metabolism scientists in designing safer drug candidates with a higher likelihood of success.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hong Wan
- WHDex Consulting AB, Mölndal, Sweden
| |
Collapse
|
2
|
Lock SK, Legge SE, Kappel DB, Willcocks IR, Helthuis M, Jansen J, Walters JTR, Owen MJ, O'Donovan MC, Pardiñas AF. Mediation and longitudinal analysis to interpret the association between clozapine pharmacokinetics, pharmacogenomics, and absolute neutrophil count. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:74. [PMID: 37853043 PMCID: PMC10585000 DOI: 10.1038/s41537-023-00404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Clozapine is effective at reducing symptoms of treatment-resistant schizophrenia, but it can also induce several adverse outcomes including neutropenia and agranulocytosis. We used linear mixed-effect models and structural equation modelling to determine whether pharmacokinetic and genetic variables influence absolute neutrophil count in a longitudinal UK-based sample of clozapine users not currently experiencing neutropenia (N = 811). Increased daily clozapine dose was associated with elevated neutrophil count, amounting to a 133 cells/mm3 rise per standard deviation increase in clozapine dose. One-third of the total effect of clozapine dose was mediated by plasma clozapine and norclozapine levels, which themselves demonstrated opposing, independent associations with absolute neutrophil count. Finally, CYP1A2 pharmacogenomic activity score was associated with absolute neutrophil count, supporting lower neutrophil levels in CYP1A2 poor metabolisers during clozapine use. This information may facilitate identifying at-risk patients and then introducing preventative interventions or individualised pharmacovigilance procedures to help mitigate these adverse haematological reactions.
Collapse
Affiliation(s)
- Siobhan K Lock
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Djenifer B Kappel
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Isabella R Willcocks
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - John Jansen
- Leyden Delta B.V., Nijmegen, The Netherlands
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
3
|
Sansoucy M, Naud JF. Using Proteins As Markers for Anabolic Steroid Abuse: A New Perspective in Doping Control? Chem Res Toxicol 2023; 36:1168-1173. [PMID: 37561919 DOI: 10.1021/acs.chemrestox.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Drug toxicity is a major concern and has motivated numerous studies to elucidate specific adverse mechanisms, with acetaminophen being the favorite candidate in toxicology studies. Conversely, androgenic anabolic steroids (AASs) also represent a severe public health issue in sports for elite and non-elite athletes. Supraphysiological dosages of AASs are associated with various adverse effects, from cardiovascular to neurological repercussions including liver dysfunction. Yet, few studies have addressed the toxicity of anabolic steroids, and a significant amount of work will be needed to elucidate and understand steroid toxicity properly. This Perspective suggests ideas on how proteomics and liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) can contribute to (1) pinpoint serum proteins affected by substantial doses of anabolic steroids that would represent interesting novel candidates for routine testing and (2) provide additional knowledge on androgenic anabolic steroid toxicity to help raise awareness on the harmful effects.
Collapse
Affiliation(s)
- Maxime Sansoucy
- Laboratoire de contrôle du dopage, Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Jean-François Naud
- Laboratoire de contrôle du dopage, Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
4
|
Torii-Goto A, Yoshimi A, Tashiro Y, Ukigai M, Matsumoto A, Ozaki N, Noda Y. A Reactive Metabolite of Clozapine Induces Hematopoietic Toxicity in HL-60 Cells Undergoing Granulocytic Differentiation through Its Effect on Glutathione Metabolism. Biol Pharm Bull 2022; 45:1232-1237. [DOI: 10.1248/bpb.b22-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Aya Torii-Goto
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine
| | - Yuko Tashiro
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University
| | - Mako Ukigai
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University
| | - Aoi Matsumoto
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University
| |
Collapse
|
5
|
Claesson A, Parkes K. Non-innocuous Consequences of Metabolic Oxidation of Alkyls on Arenes. J Med Chem 2022; 65:11433-11453. [PMID: 36001003 DOI: 10.1021/acs.jmedchem.2c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive metabolite (RM) formation is widely accepted as playing a pivotal role in causing adverse idiosyncratic drug reactions, with most attention paid to drug-induced liver injury. Mechanisms of RM formation are determined by the drug's properties in relation to human enzymes transforming the drug. This Perspective focuses on enzymatic oxidation of alkyl groups on aromatics leading to quinone methides and benzylic alcohol sulfates as RMs, a topic that has not received very much attention. Unlike previous overviews, we will include in our Perspective several fulvene-like methides such as 3-methyleneindole. We also speculate that a few older drugs may form non-reported methides of this class. In addition, we report a few guiding DFT calculations of changes in free energy on going from a benzylic alcohol to the corresponding methide. Particularly facile reactions of 2-aminothiazole-5-methanol and 4-aminobenzyl alcohol are noted.
Collapse
Affiliation(s)
- Alf Claesson
- Awametox AB, Lilldalsvägen 17 A, SE-14461 Rönninge, Sweden
| | - Kevin Parkes
- Consultant, 39 Cashio Lane, Letchworth Garden City, Hertfordshire SG6 1AY, U.K
| |
Collapse
|
6
|
Zhao J, Machalz D, Liu S, Wolf CA, Wolber G, Parr MK, Bureik M. Metabolism of the antipsychotic drug olanzapine by CYP3A43. Xenobiotica 2022; 52:413-425. [PMID: 35582917 DOI: 10.1080/00498254.2022.2078751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Olanzapine is an atypical antipsychotic primarily used to treat schizophrenia and bipolar disorder. An intronic single nucleotide polymorphism (SNP) that highly significantly predicts increased olanzapine clearance (rs472660) was previously identified in the CYP3A43 gene, which encodes a cytochrome P450 enzyme. But until now there was no experimental evidence for the metabolism of olanzapine by the CYP3A43 enzyme.2. In the present study we provide this evidence, together with a thorough analysis of olanzapine metabolism by all human CYP3A enzymes. We also rationalize our findings by molecular docking experiments. Moreover, we describe the activities of several CYP3A43 mutants and present the first enzymatic activity data for the CYP3A43.3 variant; with respect to prostate cancer, this polymorphic variant is associated with both increased risk and increased mortality. The catalytic properties of the wild type enzyme and the tumor mutant were analyzed by molecular dynamics simulations, which fit very well with the observed experimental results.3. Our finding suggests that the SNP rs472660 likely causes an increased CYP3A43 expression level and demonstrate that, depending on the substrate under study, the tumor mutant CYP3A43.3 can have increased activity in comparison to the wild type enzyme CYP3A43.1.
Collapse
Affiliation(s)
- Jie Zhao
- Tianjin University, School of Pharmaceutical Science and Technology, 92 Weijin Road, Nankai District, Tianjin, 300072, China.,Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analysis), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - David Machalz
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Clemens Alexander Wolf
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Gerhard Wolber
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Maria Kristina Parr
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analysis), Koenigin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- Tianjin University, School of Pharmaceutical Science and Technology, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|