1
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
2
|
James BD, Medvedev AV, Makarov SS, Nelson RK, Reddy CM, Hahn ME. Moldable Plastics (Polycaprolactone) can be Acutely Toxic to Developing Zebrafish and Activate Nuclear Receptors in Mammalian Cells. ACS Biomater Sci Eng 2024; 10:5237-5251. [PMID: 38981095 PMCID: PMC11323200 DOI: 10.1021/acsbiomaterials.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Popularized on social media, hand-moldable plastics are formed by consumers into tools, trinkets, and dental prosthetics. Despite the anticipated dermal and oral contact, manufacturers share little information with consumers about these materials, which are typically sold as microplastic-sized resin pellets. Inherent to their function, moldable plastics pose a risk of dermal and oral exposure to unknown leachable substances. We analyzed 12 moldable plastics advertised for modeling and dental applications and determined them to be polycaprolactone (PCL) or thermoplastic polyurethane (TPU). The bioactivities of the most popular brands advertised for modeling applications of each type of polymer were evaluated using a zebrafish embryo bioassay. While water-borne exposure to the TPU pellets did not affect the targeted developmental end points at any concentration tested, the PCL pellets were acutely toxic above 1 pellet/mL. The aqueous leachates of the PCL pellets demonstrated similar toxicity. Methanolic extracts from the PCL pellets were assayed for their bioactivity using the Attagene FACTORIAL platform. Of the 69 measured end points, the extracts activated nuclear receptors and transcription factors for xenobiotic metabolism (pregnane X receptor, PXR), lipid metabolism (peroxisome proliferator-activated receptor γ, PPARγ), and oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2). By nontargeted high-resolution comprehensive two-dimensional gas chromatography (GC × GC-HRT), we tentatively identified several compounds in the methanolic extracts, including PCL oligomers, a phenolic antioxidant, and residues of suspected antihydrolysis and cross-linking additives. In a follow-up zebrafish embryo bioassay, because of its stated high purity, biomedical grade PCL was tested to mitigate any confounding effects due to chemical additives in the PCL pellets; it elicited comparable acute toxicity. From these orthogonal and complementary experiments, we suggest that the toxicity was due to oligomers and nanoplastics released from the PCL rather than chemical additives. These results challenge the perceived and assumed inertness of plastics and highlight their multiple sources of toxicity.
Collapse
Affiliation(s)
- Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| | | | | | | | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| | - Mark E. Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 02543
| |
Collapse
|
3
|
Louis L, Simonassi-Paiva B, McAfee M, Nugent MJD. Co-axial electrosprayed RAD001-loaded polycaprolactone/polyvinyl alcohol core-shell particles for treating pediatric brain tumours. Eur J Pharm Biopharm 2024; 201:114376. [PMID: 38901620 DOI: 10.1016/j.ejpb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Core-shell particles composed of polycaprolactone/polyvinyl alcohol (PCL/PVA) with pH sensitive properties were successfully fabricated by co-axial electrospraying in which PVA and PCL formed the shell and core layers respectively. The core-shell structure was confirmed by FTIR, DSC and SEM analysis. No chemical interaction between PVA and PCL core-shell were observed in the FTIR analysis. The RAD001 loaded core-shell particles showed a sustained and pH dependent drug release and was assayed via our previously developed HPLC method. After indirect treatment of the PF-A cells with the core-shell particles for 24 h and 5 days a decrease in cell viability was observed. Additionally, a comparison was made with our previously developed nanoparticles containing 2 %PVA-14 %SOL®-0.6 % RAD001, for the cell viability study on ependymoma. Our findings show that optimised core-shell particles exerted a significant effect for the 24 h and 5 day treatment however further studies are required to ensure toxicity of the control core-shell particles with no drug is reduced. In comparison, the 2 %PVA-14 %SOL®-0.6 %RAD001 uniaxial electrosprayed nanoparticles also exerted a toxicity effect decreasing cell viability with no toxicity observed for the control nanoparticles as well. Such pH-sensitive core-shell particles, which can degrade effectively in either acidic or neutral condition, have great potential for application in the biomedical field.
Collapse
Affiliation(s)
- Lynn Louis
- PRISM Research Institute, Technological University of the Shannon, Athlone, Co. Westmeath, Ireland
| | - Bianca Simonassi-Paiva
- Biosciences Research Institute, Technological University of the Shannon, Athlone, Co. Westmeath, Ireland
| | - Marion McAfee
- Centre for mathematical modelling and Intelligent Systems for health and environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Michael J D Nugent
- PRISM Research Institute, Technological University of the Shannon, Athlone, Co. Westmeath, Ireland.
| |
Collapse
|
4
|
D’Avenio G, Daniele C, Grigioni M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1787. [PMID: 38673144 PMCID: PMC11051465 DOI: 10.3390/ma17081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Nanomaterials (NMs) are having a huge impact in several domains, including the fabrication of medical devices (MDs). Hence, nanostructured MDs are becoming quite common; nevertheless, the associated risks must be carefully considered in order to demonstrate safety prior to their immission on the market. The biological effect of NMs requires the consideration of methodological issues since already established methods for, e.g., cytotoxicity can be subject to a loss of accuracy in the presence of certain NMs. The need for oversight of MDs containing NMs is reflected by the European Regulation 2017/745 on MDs, which states that MDs incorporating or consisting of NMs are in class III, at highest risk, unless the NM is encapsulated or bound in such a manner that the potential for its internal exposure is low or negligible (Rule 19). This study addresses the role of NMs in medical devices, highlighting the current applications and considering the regulatory requirements of such products.
Collapse
Affiliation(s)
- Giuseppe D’Avenio
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy; (C.D.); (M.G.)
| | | | | |
Collapse
|
5
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
6
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
7
|
Schmitt PR, Dwyer KD, Coulombe KLK. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2461-2480. [PMID: 35623101 DOI: 10.1021/acsabm.2c00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.
Collapse
Affiliation(s)
- Phillip R Schmitt
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kiera D Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|