1
|
Wu B, Wang T, Zhang Y, Li Y, Kong C, Jiang Y, Song X, Chen X, Xie Z, Ye H, Feng L, Zhao Z, Che Y. Association of ambient ozone with time to pregnancy and the modifying effect of ambient temperature: a population-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126269. [PMID: 40254269 DOI: 10.1016/j.envpol.2025.126269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Research on the impact of ozone (O3) on fecundability has been inconclusive, lacking evidence examining the lagged pattern of ozone exposure and temperature modification. Current studies have predominantly been conducted in North America and Europe, leaving a gap in research from the Asian population. This population-based prospective cohort study involved 594,110 couples in Yunnan Province, China, enrolled in the National Free Preconception Health Examination Project. We calculated time-varying cycle-specific O3 concentration across 1-12 menstrual cycles before conception, according to each female's menstrual cycle length and residential addresses. Time to pregnancy was used as an outcome indicator. A discrete-time Cox regression model integrated with a distributed lag model (DLM) was employed for analysis. We observed that O3 exposure was negatively associated with fecundability, with the effect diminishing over time relative to conception. The first menstrual cycle before conception appeared most sensitive to O3 exposure, showing a 6.2 % decrease (HR: 0.938; 95 % CI: 0.936 to 0.941) in fecundability per one IQR increase of O3. Combined exposure to O3 and ambient temperature may exert a synergistic effect. The modifying effect of temperature was most pronounced in the first cycle before conception, with HRs of 0.891 (95 % CI: 0.886 to 0.895), 0.859 (95 % CI: 0.853 to 0.865), and 0.833 (95 % CI: 0.826 to 0.840) under low-, median-, and high-temperature conditions, respectively. Targeted policy interventions are needed to mitigate the dual impact of air pollution and rising temperatures.
Collapse
Affiliation(s)
- Bingxue Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Tao Wang
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yan Zhang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Yuyan Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Cai Kong
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Yishi Jiang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Xiangjing Song
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Xing Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Zhengyuan Xie
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Hanfeng Ye
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Lin Feng
- Qujing Maternal and Child Health-care Hospital, Qujing, 655000, China
| | - Zigao Zhao
- Yunnan Population and Family Planning Research Institute, Kunming, 650021, China; Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, First People's Hospital of Yunnan Province, Kunming, 650032, China.
| | - Yan Che
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
2
|
Gao A, You X, Li Z, Liao C, Yin Z, Zhang B, Zhang H. Health effects associated with ozone in China: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125642. [PMID: 39761714 DOI: 10.1016/j.envpol.2025.125642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/21/2025]
Abstract
As the ozone (O3) pollution becomes severe in China, it poses a threat to human health. Currently, studies on the impacts of O3 on different regions and groups are limited. This review systematically summarizes the relationship between O3 pollution and mortality and morbidity across the nation, regions, and cities in China, with a focus on the regional and group-specific studies. Then, we clarify the overall limitations in the research data, methods, and subjects. In addition, we briefly discuss the mechanisms by which O3 exposure affects human health, analyzing the effects of O3 on human health under heatwaves (temperature) condition, multi-pollutant modeling, and future climate scenarios. Finally, we give some suggestions for future research directions. Studies found that increased risks of premature mortality and morbidity of respiratory and cardiovascular diseases are closely associated with high concentration O3 exposure. Besides, the old and children are sensitive groups, more studies are needed estimate the risk of their health associated with O3 pollution. Severe O3 pollution in Northern and Eastern China, has significantly increased premature mortality. O3 pollution has led to decreased lung function in the elderly in East China, and a higher asthma risk among young people in South China. Comparing with other regions, less research studied the relationship between O3 pollution and health of local people in Southwest, Central, Northeast, and Northwest Regions. Therefore, it is necessary to enhance research in these regions, with a particular emphasis on the distinctive health consequences of O3 pollution in these regions. Given the diversity of regions and research groups, comprehensive comparison is crucial for determining the impact of O3 pollution on human health in China.
Collapse
Affiliation(s)
- Aifang Gao
- School of Water Resources and Environment, Hebei GEO University, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang, 050031, China
| | - Xi You
- School of Water Resources and Environment, Hebei GEO University, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang, 050031, China
| | - Zhao Li
- School of Water Resources and Environment, Hebei GEO University, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang, 050031, China
| | - Chenglong Liao
- School of Water Resources and Environment, Hebei GEO University, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang, 050031, China
| | - Ze Yin
- School of Water Resources and Environment, Hebei GEO University, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang, 050031, China.
| | - Baojun Zhang
- Tangshan Ecological Environment Publicity and Education Center, Tangshan, 063000, China
| | - Hongliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Robert G, Sabourin C, Wagner JR. Oxidative Deformylation of the Predominant DNA Lesion 5-Formyl-2'-deoxyuridine. Chem Res Toxicol 2024; 37:2032-2039. [PMID: 39622195 DOI: 10.1021/acs.chemrestox.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Radical oxidation of DNA gives rise to potentially deleterious lesions such as strand breaks and various nucleobase modifications including 5-formyl-2'-deoxyuridine (5-fo-dU), a prevalent product derived from the oxidation of the C5-methyl group of thymidine. The present study investigates the unusual transformation of 5-fo-dU into 5-hydroxy-2'-deoxyuridine (5-oh-dU) and 5,6-dihydroxy-5,6-dihydro-2'-deoxuridine (gly-dU), two products typically associated with the oxidation of 2'-deoxycytidine. Detailed mechanistic analyses reveal that hydrogen peroxide, either generated as a byproduct of ascorbate autoxidation or added exogenously, mediates the formation of these oxidatively induced C5-dealkylated products. We show that the major product 5-oh-dU results from a Baeyer-Villiger rearrangement of the formyl functionality of 5-fo-dU while the minor product gly-dU derives from α,β-oxidation of the enal portion followed by deformylation. These reactions were observed in both 2'-deoxynucleoside monomers as well as isolated DNA. Our findings further clarify the oxidation chemistry of thymidine and highlight a novel oxidative decomposition pathway that can help understand the fate of certain types of DNA damage. Furthermore, our results underscore the pro-oxidant properties of ascorbate in vitro that can lead to the adventitious oxidation of substrates via the reduction of trace metals ions and generation of hydrogen peroxide.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Charlotte Sabourin
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
4
|
Rodriguez P, López-Landa A, Romo-Parra H, Rubio-Osornio M, Rubio C. Unraveling the ozone impact and oxidative stress on the nervous system. Toxicology 2024; 509:153973. [PMID: 39423999 DOI: 10.1016/j.tox.2024.153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Ozone (O₃), a potent oxidant, can penetrate the body through breathing, generating reactive oxygen species (ROS) and triggering inflammatory processes. Oxidative stress, an imbalance between the production of ROS and the body's antioxidant capacity, plays a crucial role in the pathophysiology of various neurodegenerative diseases. This phenomenon can negatively impact the Central Nervous System (CNS), inducing structural and functional alterations that contribute to the development of neurological pathologies. This review examines how O₃-induced oxidative stress affects the nervous system by analyzing existing literature on the involved molecular mechanisms and potential antioxidant systems to mitigate its effects. Through a comprehensive review of experimental studies, our objective is to shed light on the interaction between O₃ and the nervous system, as well as its signaling pathways and altered genes, providing a foundation for future research in this field. Several studies have demonstrated that prolonged exposure to O₃ leads to increased expression of reactive oxygen species, causing alterations in the blood-brain barrier and damage to astrocytes and microglia. These effects can lead to an increase in the production of proinflammatory cytokines, neurotoxins, and genes, exacerbating neuronal damage and accelerating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and other neurological disorders. The results of this review suggest that exposure to O₃ may induce oxidative damage to the nervous system, which could have significant implications for public health.
Collapse
Affiliation(s)
- Paola Rodriguez
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Héctor Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Psychology Department, Universidad Iberoamericana, Mexico, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico.
| |
Collapse
|
5
|
Singh P, Ansari N, Rai SP, Agrawal M, Agrawal SB. Effect of elevated ozone on the antioxidant response, genomic stability, DNA methylation pattern and yield in three species of Abelmoschus having different ploidy levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59401-59423. [PMID: 37004611 DOI: 10.1007/s11356-023-26538-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
The majority of polyploids can withstand many stresses better than their monoploid counterparts; however, there is no proven mechanism that can fully explain the level of tolerance at the biochemical and molecular levels. Here, we make an effort to provide an explanation for this intriguing but perplexing issue using the antioxidant responses, genomic stability, DNA methylation pattern and yield in relation to ploidy level under the elevated level of ozone in Abelmoschus cytotypes. The outcome of this study inferred that the elevated ozone causes an increase in reactive oxygen species leading to enhanced lipid peroxidation, DNA damage and DNA de-methylation in all the Abelmoschus cytotypes. The monoploid cytotype of Abelmoschus, that is Abelmoschus moschatus L., experienced the highest oxidative stress under elevated O3, resulting in maximum DNA damage and DNA de-methylation leading to the maximum reduction in yield. While the diploid (Abelmoschus esculentus L.) and triploid (Abelmoschus caillei A. Chev.) cytotypes of Abelmoschus with lower oxidative stress result in lesser DNA damage and DNA de-methylation which ultimately leads to lower yield reduction. The result of this experiment explicitly revealed that polyploidy confers better adaptability in the case of Abelmoschus cytotypes under ozone stress. This study can further be used as a base to understand the mechanism behind the ploidy-induced stress tolerance in other plants mediated by gene dosage effect.
Collapse
Affiliation(s)
- Priyanka Singh
- Laboratory of Air Pollution and Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Naushad Ansari
- Laboratory of Air Pollution and Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
7
|
Munnia A, Bollati V, Russo V, Ferrari L, Ceppi M, Bruzzone M, Dugheri S, Arcangeli G, Merlo F, Peluso M. Traffic-Related Air Pollution and Ground-Level Ozone Associated Global DNA Hypomethylation and Bulky DNA Adduct Formation. Int J Mol Sci 2023; 24:ijms24032041. [PMID: 36768368 PMCID: PMC9916664 DOI: 10.3390/ijms24032041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Studies have indicated that air pollution, including surface-level ozone (O3), can significantly influence the risk of chronic diseases. To better understand the carcinogenic mechanisms of air pollutants and identify predictive disease biomarkers, we examined the association between traffic-related pollutants with DNA methylation alterations and bulky DNA adducts, two biomarkers of carcinogen exposure and cancer risk, in the peripheral blood of 140 volunteers-95 traffic police officers, and 45 unexposed subjects. The DNA methylation and adduct measurements were performed by bisulfite-PCR and pyrosequencing and 32P-postlabeling assay. Airborne levels of benzo(a)pyrene [B(a)P], carbon monoxide, and tropospheric O3 were determined by personal exposure biomonitoring or by fixed monitoring stations. Overall, air pollution exposure was associated with a significant reduction (1.41 units) in global DNA methylation (95% C.I. -2.65-0.04, p = 0.026). The decrement in ALU repetitive elements was greatest in the policemen working downtown (95% C.I. -3.23--0.49, p = 0.008). The DNA adducts were found to be significantly increased (0.45 units) in the municipal officers with respect to unexposed subjects (95% C.I. 0.02-0.88, p = 0.039), mainly in those who were controlling traffic in downtown areas (95% C.I. 0.39-1.29, p < 0.001). Regression models indicated an increment of ALU methylation at higher B(a)P concentrations (95% C.I. 0.03-0.60, p = 0.032). Moreover, statistical models showed a decrement in ALU methylation and an increment of DNA damage only above the cut-off value of 30 µg/m3 O3. A significant increment of 0.73 units of IL-6 gene methylation was also found in smokers with respect to non-smokers. Our results highlighted the role of air pollution on epigenetic alterations and genotoxic effects, especially above the target value of 30 µg/m3 surface-level O3, supporting the necessity for developing public health strategies aimed to reduce traffic-related air pollution molecular alterations.
Collapse
Affiliation(s)
- Armelle Munnia
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Valentina Bollati
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Russo
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Ferrari
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Stefano Dugheri
- Laboratorio di Igiene e Tossicologia Industriale, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Giulio Arcangeli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, 50121 Florence, Italy
| | - Franco Merlo
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale, IRCCS, 42121 Reggio Emilie, Italy
| | - Marco Peluso
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
- Correspondence:
| |
Collapse
|
8
|
Ghanemi A, Yoshioka M, St-Amand J. DNA Damage as a Mechanistic Link between Air Pollution and Obesity? MEDICINES (BASEL, SWITZERLAND) 2022; 10:medicines10010004. [PMID: 36662488 PMCID: PMC9863819 DOI: 10.3390/medicines10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
It has been shown that the risk of developing obesity, a serious modern health problem, increases with air pollution. However, the molecular links are yet to be fully elucidated. Herein, we propose a hypothesis via which air pollution-induced DNA damage would be the mechanistic link between air pollution and the enhanced risk of obesity and overweight. Indeed, whereas air pollution leads to DNA damage, DNA damage results in inflammation, oxidative stress and metabolic impairments that could be behind energy balance changes contributing to obesity. Such thoughts, worth exploring, seems an important starting point to better understand the impact of air pollution on obesity development independently from the two main energy balance pillars that are diet and physical activity. This could possibly lead to new applications both for therapies as well as for policies and regulations.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
9
|
Agrawal D, Kumari R, Ratre P, Rehman A, Srivastava RK, Reszka E, Goryacheva IY, Mishra PK. Cell-free circulating miRNAs-lncRNAs-mRNAs as predictive markers for breast cancer risk assessment in women exposed to indoor air pollution. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100267. [DOI: 10.1016/j.cscee.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
|
10
|
Effect of Ozone Treatment Intensity on Pasting Property, Protein Composition, and Steamed Bread Quality of Ozone-Treated Wheat Flour. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1584656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wheat flours were treated with ozone gas at low- and high-intensity conditions (0.61 and 3.82 g/h) for different durations (short: 5 min; long: 30 min), and the ozone-treated flours were evaluated in quality properties, including pH, protein component, water molecular mobility of dough, pasting property, and steamed bread quality. At both conditions, ozone treatment decreased the pH of wheat flour. Long duration of high-intensity treatment aroused significant increase in insoluble polymeric protein (IPP) content of wheat flour, but other treatments did not significantly change the IPP content. Dough of ozone-treated flour had higher water molecular mobility than that of native flour. Short duration of low-intensity treatment did not significantly change most pasting viscosity parameters of wheat flour, but other treatments increased the peak viscosity, breakdown viscosity, and setback viscosity. Steamed bread of ozone-treated flour had lower specific volume and pore uniformity than that of native flour. Long duration of high-intensity treatment of flour increased the hardness and chewiness of the steamed bread product, but other treatment showed opposite effect. Among the four ozone treatments, long duration of high-intensity treatment aroused the greatest change in pH, IPP, water molecular mobility of dough, and the quality of steamed bread, while short duration of low-intensity treatment had the minimum effect. Long duration of low-intensity treatment was close to the short duration of high-intensity treatment in quality attributes of wheat flour and the total ozone yield. These results suggested that the quality of wheat flour gradually changed with the increase of total ozone yield, and overozonization would greatly deteriorate the quality of wheat flour.
Collapse
|
11
|
Chabot MB, Fleming AM, Burrows CJ. Insights into the 5-Carboxamido-5-Formamido-2-Iminohydantoin Structural Isomerization Equilibria. J Org Chem 2022; 87:11865-11870. [PMID: 35960780 DOI: 10.1021/acs.joc.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of DNA to oxidants results in modification of the electron-rich guanine heterocycle including formation of the mutagenic 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) lesion. Previously thought to exist solely as a pair of diastereomers, we found under biologically relevant conditions that 2Ih reversibly closes to a formerly hypothetical intermediate and opens into a newly discovered regioisomer. In a nucleoside model, only ∼80% of 2Ih existed as the structure studied over the last 20 years with significant isomeric products persisting in buffered aqueous solution.
Collapse
Affiliation(s)
- Michael B Chabot
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
12
|
Chabot MB, Fleming AM, Burrows CJ. Identification of the Major Product of Guanine Oxidation in DNA by Ozone. Chem Res Toxicol 2022; 35:1809-1813. [PMID: 35642826 DOI: 10.1021/acs.chemrestox.2c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ozonolysis of guanosine formed the 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) nucleoside along with trace spiroiminodihydantoin (Sp). On the basis of literature precedent, we propose an unconventional ozone mechanism involving incorporation of only one oxygen atom of O3 to form 2Ih with evolution of singlet oxygen responsible for Sp formation. The increased yield of Sp in the buffered 1O2-stabilizing solvent D2O, formation of 2Ih in a short oligodeoxynucleotide, and 18O-isotope labeling provided evidence to support this mechanism. The elusiveness and challenges of working with 2Ih are described in a series of studies on the significant context effects on the half-life of the 2Ih glycosidic bond.
Collapse
Affiliation(s)
- Michael B Chabot
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
13
|
Tippayawat P, Vongnarkpetch C, Papalee S, Srijampa S, Boonmars T, Meethong N, Phanthanawiboon S. Disinfection efficiency test for contaminated surgical mask by using Ozone generator. BMC Infect Dis 2022; 22:234. [PMID: 35255835 PMCID: PMC8900110 DOI: 10.1186/s12879-022-07227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ozone (O3) is an effective disinfectant agent that leaves no harmful residues. Due to the global health crisis caused by the COVID-19 pandemic, surgical masks are in high demand, with some needing to be reused in certain regions. This study aims to evaluate the effects of O3 for pathogen disinfection on reused surgical masks in various conditions. METHODS O3 generators, a modified PZ 2-4 for Air (2000 mg O3/L) and a modified PZ 7 -2HO for Air (500 mg O3/L), were used together with 1.063 m3 (0.68 × 0.68 × 2.3 m) and 0.456 m3 (0.68 × 0.68 × 1.15 m) acrylic boxes as well as a room-sized 56 m3 (4 × 4 × 3.5 m) box to provide 3 conditions for the disinfection of masks contaminated with enveloped RNA virus (105 FFU/mL), bacteria (103 CFU/mL) and fungi (102 spores/mL). RESULTS The virucidal effects were 82.99% and 81.70% after 15 min of treatment with 2000 mg/L O3 at 1.063 m3 and 500 mg/L O3 at 0.456 m3, respectively. The viral killing effect was increased over time and reached more than 95% after 2 h of incubation in both conditions. By using 2000 mg/L O3 in a 1.063 m3 box, the growth of bacteria and fungi was found to be completely inhibited on surgical masks after 30 min and 2 h of treatment, respectively. Using a lower-dose O3 generator at 500 mg O3/L in 0.456 m3 provided lower efficiency, although the difference was not significant. Using O3 at 2000 mg O3/L or 500 mg O3/L in a 56 m3 room is efficient for the disinfection of all pathogens on the surface of reused surgical masks. CONCLUSIONS This study provided the conditions for using O3 (500-2000 mg/L) to reduce pathogens and disinfect contaminated surgical masks, which might be applied to reduce the inappropriate usage of reused surgical masks.
Collapse
Affiliation(s)
- Patcharaporn Tippayawat
- Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Saitharn Papalee
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Srijampa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nonglak Meethong
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
14
|
Wang SD, Eriksson LA, Zhang RB. Dynamics of 5R-Tg Base Flipping in DNA Duplexes Based on Simulations─Agreement with Experiments and Beyond. J Chem Inf Model 2022; 62:386-398. [PMID: 34994562 PMCID: PMC8790752 DOI: 10.1021/acs.jcim.1c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Damaged or mismatched
DNA bases are normally thought to be able
to flip out of the helical stack, providing enzymes with access to
the faulty genetic information otherwise hidden inside the helix.
Thymine glycol (Tg) is one of the most common products of nucleic
acid damage. However, the static and dynamic structures of DNA duplexes
affected by 5R-Tg epimers are still not clearly understood, including
the ability of these to undergo spontaneous base flipping. Structural
effects of the 5R-Tg epimers on the duplex DNA are herein studied
using molecular dynamics together with reliable DFT based calculations.
In comparison with the corresponding intact DNA, the cis-5R,6S-Tg epimer base causes little perturbation to the duplex DNA,
and a barrier of 4.9 kcal mol–1 is obtained by meta-eABF
for cis-5R,6S-Tg base flipping out of the duplex
DNA, comparable to the 5.4 kcal mol–1 obtained for
the corresponding thymine flipping in intact DNA. For the trans-5R,6R-Tg epimer, three stable local structures were
identified, of which the most stable disrupts the Watson–Crick
hydrogen-bonded G5/C20 base pair, leading to conformational distortion
of the duplex. Interestingly, the relative barrier height of the 5R-Tg
flipping is only 1.0 kcal mol–1 for one of these trans-5R,6R-Tg epimers. Water bridge interactions were identified
to be essential for 5R-Tg flipping. The study clearly demonstrates
the occurrence of partial trans-5R,6R-Tg epimer flipping
in solution.
Collapse
Affiliation(s)
- Shu Dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30 Göteborg, Sweden
| | - Ru Bo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| |
Collapse
|