1
|
He C, Mao Y, Wan H. In-depth understanding of the structure-based reactive metabolite formation of organic functional groups. Drug Metab Rev 2025; 57:147-189. [PMID: 40008940 DOI: 10.1080/03602532.2025.2472076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a leading cause of drug attrition and/or withdrawal. The formation of reactive metabolites is widely accepted as a key factor contributing to idiosyncratic DILI. Therefore, identifying reactive metabolites has become a critical focus during lead optimization, and a combination of GSH-/cyano-trapping and cytochrome P450 inactivation studies is recommended to identify compounds with the potential to generate reactive metabolites. Daily dose, clinical indication, detoxication pathways, administration route, and treatment duration are the most considerations when deprioritizing candidates that generate reactive metabolites. Removing the structural alerts is considered a pragmatic strategy for mitigating the risk associated with reactive metabolites, although this approach may sometimes exclude otherwise potent molecules. In this context, an in-depth insight into the structure-based reactive metabolite formation of organic functional groups can significantly aid in the rational design of drug candidates with improved safety profiles. The primary goal of this review is to delve into an analysis of the bioactivation mechanisms of organic functional groups and their potential detrimental effects with recent examples to assist medicinal chemists and metabolism scientists in designing safer drug candidates with a higher likelihood of success.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hong Wan
- WHDex Consulting AB, Mölndal, Sweden
| |
Collapse
|
2
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Liang X, Tian Q, Chen L, Zhang Y, Peng Y. Licorice processing involving functions of Evodiae Fructus on liver inflammation and oxidative stress are associated with intestinal mucosal microbiota. Front Microbiol 2024; 15:1439204. [PMID: 39176281 PMCID: PMC11340806 DOI: 10.3389/fmicb.2024.1439204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Background This study aimed to investigate the effects of licorice processing of different Evodiae Fructus (EF) specifications on liver inflammation and oxidative stress associated with the intestinal mucosal microbiota. Materials and methods The 25 Kunming mice were divided into control (MCN), raw small-flowered Evodiae Fructus (MRSEF), raw medium-flowered EF (MRMEF), licorice-processed small-flowered EF (MLSEF), and licorice-processed medium-flowered EF (MLSEF) groups. The EF intervention groups were given different specifications of EF extract solutions by gavage. After 21 days, indices of liver inflammation and oxidative stress and intestinal mucosal microbiota were measured in mice. Results Compared with the MCN, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels were significantly increased in the MRMEF. Although the trends of oxidative stress and inflammatory indexes in the MLSEF and MLMEF were consistent with those in the raw EF groups, the changes were smaller than those in the raw EF groups. Compared to the raw EF groups, the MLSEF and MLMEF showed closer approximations of metabolic function to the MCN. The abundance of Corynebacterium in MRMEF was significantly lower than that in the MCN, and it was not significantly different from the MCN after licorice processing. The probiotic Candidatus Arthromitus was enriched in the MLSEF. The probiotic Lactobacillus was enriched in the MLMEF. Correlation analysis revealed significant negative correlations between IL-1β, some metabolic functions and Corynebacterium. Conclusion The effects of medium-flowered EF on oxidative stress and inflammatory factors in the liver of mice were stronger than those of small-flowered EF. The licorice processing can reduce this difference by modulating the abundance of Corynebacterium and intestinal mucosal metabolic function.
Collapse
Affiliation(s)
| | - Qixue Tian
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, China
- National Traditional Chinese Medicine Processing Technology Inheritance Base of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Linglong Chen
- Hunan Academy of Chinese Medicine, Changsha, China
- National Traditional Chinese Medicine Processing Technology Inheritance Base of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yanbing Zhang
- Cili County Chinese Medicine Hospital, Zhangjiajie, China
| | - Yanmei Peng
- Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Wan M, Gao H, Liu X, Zhang Y. Rutaecarpine Aggravates Acetaminophen-Induced Acute Liver Injury by Inducing CYP1A2. TOXICS 2024; 12:515. [PMID: 39058167 PMCID: PMC11280960 DOI: 10.3390/toxics12070515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
In this study, we investigated whether rutaecarpine could aggravate acetaminophen-induced acute liver damage in vivo and in vitro. CCK-8 and apoptosis assays were performed to verify the cytotoxicity of acetaminophen to L02 cells with or without rutaecarpine. The expression levels of the target proteins and genes were determined using Western blotting and qRT-PCR. The liver pathological changes were evaluated with hematoxylin and eosin staining, while the aspartate aminotransferase (AST) and alanine aminotransferase (AST) levels in plasma were measured to assess the liver damage. Our results revealed that pretreatment of the cell and mice with rutaecarpine significantly aggravated the acetaminophen-induced liver damage. Mechanistically, rutaecarpine induces the CYP1A2 protein, which accelerates the metabolism of acetaminophen to produce a toxic intermediate, N-acetyl-p-benzoquinone imine (NAPQI), leading to severe liver inflammation. Rutaecarpine exacerbated the liver damage by upregulating CYP1A2 and proinflammatory factors. These findings highlight the importance of carefully considering the dosage of rutaecarpine when combined with acetaminophen in drug design and preclinical trials.
Collapse
Affiliation(s)
- Meiqi Wan
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (M.W.); (H.G.)
| | - Hua Gao
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (M.W.); (H.G.)
| | - Xiaoyan Liu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (M.W.); (H.G.)
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
5
|
Wu S, Daston G, Rose J, Blackburn K, Fisher J, Reis A, Selman B, Naciff J. Identifying chemicals based on receptor binding/bioactivation/mechanistic explanation associated with potential to elicit hepatotoxicity and to support structure activity relationship-based read-across. Curr Res Toxicol 2023; 5:100108. [PMID: 37363741 PMCID: PMC10285556 DOI: 10.1016/j.crtox.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The liver is the most common target organ in toxicology studies. The development of chemical structural alerts for identifying hepatotoxicity will play an important role in in silico model prediction and help strengthen the identification of analogs used in structure activity relationship (SAR)- based read-across. The aim of the current study is development of an SAR-based expert-system decision tree for screening of hepatotoxicants across a wide range of chemistry space and proposed modes of action for clustering of chemicals using defined core chemical categories based on receptor-binding or bioactivation. The decision tree is based on ∼ 1180 different chemicals that were reviewed for hepatotoxicity information. Knowledge of chemical receptor binding, metabolism and mechanistic information were used to group these chemicals into 16 different categories and 102 subcategories: four categories describe binders to 9 different receptors, 11 categories are associated with possible reactive metabolites (RMs) and there is one miscellaneous category. Each chemical subcategory has been associated with possible modes of action (MOAs) or similar key structural features. This decision tree can help to screen potential liver toxicants associated with core structural alerts of receptor binding and/or RMs and be used as a component of weight of evidence decisions based on SAR read-across, and to fill data gaps.
Collapse
|
6
|
Zhao J, He J, Xu J. Mechanism-Based Inactivation of Cytochrome P450 3A by Evodol. Xenobiotica 2023:1-11. [PMID: 37092795 DOI: 10.1080/00498254.2023.2207200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
1. Evodol is one of the furanoids isolated from the fruits of Evodia rutaecarpa that has been widely prescribed for the treatment of gastrointestinal diseases in China. The aim of this study was to investigate the inhibitory effect of evodol on CYP3A.2. A 30-min preincubation of evodol with human liver microsomes raised an obvious left IC50 shift, 3.9-fold for midazolam 1'-hydroxylation and 3.2-fold for testosterone 6β-hydroxylation. Evodol inactivated CYP3A in a time-, concentration- and NADPH-dependent manner, with KI and kinact of 5.1 μM and 0.028 min-1 for midazolam 1'-hydroxylation and 3.0 μM and 0.022 min-1 for testosterone 6β-hydroxylation.3. Co-incubation of ketoconazole attenuated the inactivation while inclusion of glutathione (GSH) and catalase/superoxide dismutase displayed no such protection.4. cis-Butene-1, 4-dial (BDA) intermediate derived from evodol were trapped by glutathione and N-acetyl-lysine in microsomes and characterized by HR-MS spectra. The BDA intermediate was believed to play a key role in CYP3A inactivation. CYP3A4 and 2C9 were the primary enzymes contributing to the bioactivation of evodol.5. To sum up, for the first time evodol was characterized as a mechanism-based inactivator of CYP3A.
Collapse
Affiliation(s)
- Jie Zhao
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jingyu He
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 211122, China
| | - Jie Xu
- Department of Phase I Clinical Trial Research, Nanjing Gaoxin Hospital, Nanjing 210031, China
| |
Collapse
|
7
|
Yan C, Peng T, Zhang T, Wang Y, Li N, Wang K, Jiang X. Molecular mechanisms of hepatotoxicity induced by compounds occurring in Evodiae Fructus. Drug Metab Rev 2023; 55:75-93. [PMID: 36803497 DOI: 10.1080/03602532.2023.2180027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.
Collapse
Affiliation(s)
- Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
8
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
9
|
Zhang C, Fan S, Zhao JQ, Jiang Y, Sun JX, Li HJ. Transcriptomics and metabolomics reveal the role of CYP1A2 in psoralen/isopsoralen-induced metabolic activation and hepatotoxicity. Phytother Res 2023; 37:163-180. [PMID: 36056681 DOI: 10.1002/ptr.7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Psoralen and isopsoralen are the pharmacologically important but hepatotoxic components in Psoraleae Fructus. The purpose of this study was to reveal the underlying mechanism of psoralen/isopsoralen-induced hepatotoxicity. Initially, we applied integrated analyses of transcriptomic and metabolomic profiles in mice treated with psoralen and isopsoralen, highlighting the xenobiotic metabolism by cytochromes P450 as a potential pathway. Then, with verifications of expression levels by qRT-PCR and western blot, affinities by molecular docking, and metabolic contributions by recombinant human CYP450 and mouse liver microsomes, CYP1A2 was screened out as the key metabolic enzyme. Afterwards, CYP1A2 induction and inhibition models in HepG2 cells and mice were established to verify the role of CYP1A2, demonstrating that induction of CYP1A2 aggravated the hepatotoxicity, and conversely inhibition alleviated the hepatotoxic effects. Additionally, we detected glutathione adducts with reactive intermediates of psoralen and isopsoralen generated by CYP1A2 metabolism in biosystems of recombinant human CYP1A2 and mouse liver microsomes, CYP1A2-overexpressed HepG2 cells, mice livers and the chemical reaction system using UPLC-Q-TOF-MS/MS. Ultimately, the high-content screening presented the cellular oxidative stress and relevant hepatotoxicity due to glutathione depletion by reactive intermediates. In brief, our findings illustrated that CYP1A2-mediated metabolic activation is responsible for the psoralen/isopsoralen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Song Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Li W, Hu Z, Sun C, Wang Y, Li W, Peng Y, Zheng J. A Metabolic Activation-Based Chemoproteomic Platform to Profile Adducted Proteins Derived from Furan-Containing Compounds. ACS Chem Biol 2022; 17:873-882. [PMID: 35353477 DOI: 10.1021/acschembio.1c00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human exposure to widespread furan-containing compounds (FCCs) has drawn much attention due to the high risk of their toxicities. Identifying adducted proteins resulting from the metabolic activation of FCCs is the core to learning the mechanism of FCCs' toxic action. We succeeded in establishing a metabolic activation-based chemoproteomic platform to map FCC-derived protein adducts in cultured primary hepatocytes treated with FCCs and to pinpoint the modification sites, using click chemistry but without alkynylation or azidation of FCCs to be investigated. The proposed platform was systematically verified by biomimetic synthesis, liver microsomal incubation, and primary hepatocyte culture. A mixture of furan, 2-methylfuran, and 2,5-dimethylfuran as model was tested by use of the established platform. A total of hepatic 171 lysine-based adducted proteins and 145 cysteine-based adducted proteins by the reactive metabolites of the three FCCs were enriched and identified (Byonic score ≥ 100). The target proteins were found to mainly participate in ATP synthesis. The technique was also successfully applied to furan-containing natural products. The established platform made it possible to profile covalently adducted proteins, because of potential exposure to a vast inventory of over two million of FCCs documented.
Collapse
Affiliation(s)
- Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yuwei Wang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
11
|
Wang YK, Li WQ, Xia S, Guo L, Miao Y, Zhang BK. Metabolic Activation of the Toxic Natural Products From Herbal and Dietary Supplements Leading to Toxicities. Front Pharmacol 2021; 12:758468. [PMID: 34744736 PMCID: PMC8564355 DOI: 10.3389/fphar.2021.758468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Currently, herbal and dietary supplements have been widely applied to prevent and treat various diseases. However, the potential toxicities and adverse reactions of herbal and dietary supplements have been increasingly reported, and have gradually attracted widespread attention from clinical pharmacists and physicians. Metabolic activation of specific natural products from herbal and dietary supplements is mediated by hepatic cytochrome P450 or intestinal bacteria, and generates chemical reactive/toxic metabolites that bind to cellular reduced glutathione or macromolecules, and form reactive metabolites-glutathione/protein/DNA adducts, and these protein/DNA adducts can result in toxicities. The present review focuses on the relation between metabolic activation and toxicities of natural products, and provides updated, comprehensive and critical comment on the toxic mechanisms of reactive metabolites. The key inductive role of metabolic activation in toxicity is highlighted, and frequently toxic functional groups of toxic natural products were summarized. The biotransformation of drug cytochrome P450 or intestinal bacteria involved in metabolic activation were clarified, the reactive metabolites-protein adducts were selected as biomarkers for predicting toxicity. And finally, further perspectives between metabolic activation and toxicities of natural products from herbal and dietary supplements are discussed, to provide a reference for the reasonable and safe usage of herbal and dietary supplements.
Collapse
Affiliation(s)
- Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Miao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
12
|
Xing Y, Xing H, Ma Y, Liu Q, Xu S. In Vitro and In Vivo Studies of Metabolic Activation of Marrubiin, a Bioactive Constituent from Marrubium Vulgare. Chem Res Toxicol 2021; 34:2157-2165. [PMID: 34431289 DOI: 10.1021/acs.chemrestox.1c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marrubiin, a furanoid compound, is a well-known diterpenoid lactone isolated from Marrubium vulgare, which displays a wide spectrum of pharmacological effects and potential hepatotoxicity. Considering that marrubiin contains a structural alert, furan ring, metabolic activation may be one of the major metabolic pathways, and the reactive metabolite may be involved in the hepatotoxicity. The present study was carried out to investigate the bioactivation mechanism of marrubiin in rats and humans. Marrubiin was initially metabolized into cis-butene-1,4-dial intermediate, which was readily trapped by glutathione (GSH) and N-acetyl-lysine (NAL) in the microsomal incubations supplemented with NADPH. A total of nine conjugates were detected and identified by high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. M1-M3 and M6 and M7 were characterized as mono-GSH conjugates, and M4 and M5 were identified as bis-GSH conjugates. M8 and M9 were identified as NAL conjugates. In rat bile, five GSH conjugates (M1-M3; M6 and M7) were detected. M1, M8, and M9 were chemically synthesized, and their structures were characterized by 13C NMR. Sulfaphenazole, ticlopidine, and ketoconazole displayed significant inhibitory effect on the bioactivation of marrubiin. Further phenotyping revealed that CYP2C9, CYP2C19, and CYP3A4 were the primary enzymes catalyzing the bioactivation of marrubiin. The current study provides evidence for the CYP-dominated bioactivation of marrubiin to the corresponding cis-butene-1,4-dial intermediate, which enables us to better understand the potential side effects caused by marrubiin.
Collapse
Affiliation(s)
- Yongtian Xing
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Qingwang Liu
- Institute of Health & Medical Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Suyan Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| |
Collapse
|
13
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|