1
|
Öz M, Inanan BE, Üstüner E, Karagoz B, Dikel S. Effects of dietary garlic (Allium sativum) oil on growth performance, haemato-biochemical and histopathology of cypermethrin-intoxicated Nile tilapia (Oreochromis niloticus). Vet Med Sci 2024; 10:e1449. [PMID: 38581350 PMCID: PMC10998455 DOI: 10.1002/vms3.1449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND When pesticides are introduced into wetlands by agriculture, fish quickly absorb them through their gills. Pesticides reduce hatchability, impede growth, and antioxidant response, killing fish. Therefore, it's crucial to find effective pesticide mitigation methods for fish. OBJECTIVE In this study, the effects of garlic (Allium sativum) oil on the growth, haematology, biochemistry and histopathology parameters of Nile tilapia (Oreochromis niloticus) exposed to cypermethrin toxicity were investigated. METHODS In the research, cypermethrin was added to the water of the experimental groups at a rate of 1:20 of the LC50 value, and 1.00% garlic oil was added to the fish feed. Fish with an initial weight of 30.26 ± 0.26 g were fed for 45 days. RESULTS At the end of feeding, the final weights were determined as 69.39 ± 0.41 (G1), 61.81 ± 0.65 (G2), 82.25 ± 0.36 (G3), and 75.04 ± 0.68 (G4) grams, respectively. Histopathological examinations revealed serious lesions in the gill, liver, brain, and muscle tissues in the cypermethrin group, whereas these lesions were minimal or absent in the garlic oil group. CONCLUSIONS Garlic oil supplementation had positive effects on growth, haematology, blood biochemistry, hepatosomatic index and histopathological parameters. These findings suggest that garlic oil is a potential protective agent against cypermethrin toxicity.
Collapse
Affiliation(s)
- Mustafa Öz
- Faculty of Veterinary MedicineDepartment of Fisheries and DiseasesAksaray UniversityAksarayTurkey
| | - Burak Evren Inanan
- Faculty of Veterinary MedicineDepartment of Fisheries and DiseasesAksaray UniversityAksarayTurkey
| | - Enes Üstüner
- Faculty of Veterinary MedicineDepartment of Fisheries and DiseasesAksaray UniversityAksarayTurkey
| | - Betül Karagoz
- Department of Fisheries and DiseasesGraduate School of Health SciencesAksaray UniversityAksarayTurkey
| | - Suat Dikel
- Faculty of FisheriesDepartment of AquacultureCukurova UniversityAdanaTurkey
| |
Collapse
|
2
|
Villaorduña C, Mendoza-Carlos M, Chuyma M, Avilés J, Avalos-Diaz A, Lozano-Reategui R, Garcia-Ruiz J, Panduro-Tenazoa N, Vargas J, Moran-Quintanilla Y, Rodríguez JL. Ipconazole Induces Oxidative Stress, Cell Death, and Proinflammation in SH-SY5Y Cells. TOXICS 2023; 11:566. [PMID: 37505534 PMCID: PMC10385182 DOI: 10.3390/toxics11070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Ipconazole is an antifungal agrochemical widely used in agriculture against seed diseases of rice, vegetables, and other crops; due to its easy accumulation in the environment, it poses a hazard to human, animal, and environmental health. Therefore, we investigated the cytotoxic effect of ipconazole on SH-SY5Y neuroblastoma cells using cell viability tests (MTT), ROS production, caspase3/7 activity, and molecular assays of the biomarkers of cell death (Bax, Casp3, APAF1, BNIP3, and Bcl2); inflammasome (NLRP3, Casp1, and IL1β); inflammation (NFκB, TNFα, and IL6); and antioxidants (NRF2, SOD, and GPx). SH-SY5Y cells were exposed to ipconazole (1, 5, 10, 20, 50, and 100 µM) for 24 h. The ipconazole, in a dose-dependent manner, reduced cell viability and produced an IC50 of 32.3 µM; it also produced an increase in ROS production and caspase3/7 enzyme activity in SH-SY5Y cells. In addition, ipconazole at 50 µM induced an overexpression of Bax, Casp3, APAF1, and BNIP3 (cell death genes); NLRP3, Casp1, and IL1B (inflammasome complex genes); and NFκB, TNFα, and IL6 (inflammation genes); it also reduced the expression of NRF2, SOD, and GPx (antioxidant genes). Our results show that ipconazole produces cytotoxic effects by reducing cell viability, generating oxidative stress, and inducing cell death in SH-SY5Y cells, so ipconazole exposure should be considered as a factor in the presentation of neurotoxicity or neurodegeneration.
Collapse
Affiliation(s)
- Carlos Villaorduña
- Faculty of Pharmacy, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Mariano Mendoza-Carlos
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Manuel Chuyma
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Jhon Avilés
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Ayda Avalos-Diaz
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Ronald Lozano-Reategui
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Juan Garcia-Ruiz
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Nadia Panduro-Tenazoa
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Jessy Vargas
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - Ysabel Moran-Quintanilla
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru
| | - José-Luis Rodríguez
- Faculty of Veterinary, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Xiao K, Song L, Li Y, Li C, Zhang S. Dietary intake of microplastics impairs digestive performance, induces hepatic dysfunction, and shortens lifespan in the annual fish Nothobranchius guentheri. Biogerontology 2023; 24:207-223. [PMID: 36592268 DOI: 10.1007/s10522-022-10007-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
Microplastics (MPs) are ubiquitous in aquatic and terrestrial ecosystem, increasingly becoming a serious concern of human health. Many studies have explored the biological effects of MPs on animal and plant life in recent years. However, information regarding the effects of MPs on aging and lifespan is completely lacking in vertebrate species to date. Here we first confirm the bioavailability of MPs by oral delivery in the annual fish N. guentheri. We then show for the first time that administration of MPs not only shortens the lifespan but also accelerates the development of age-related biomarkers in N. guentheri. We also demonstrate that administration of MPs induces oxidative stress, suppresses antioxidant enzymes, reduces digestive enzymes, and causes hepatic dysfunction. Therefore, we propose that administration of MPs reduces lifespan of N. guentheri via induction of both suppressed antioxidant system and digestive disturbance as well as hepatic damage. Our results also suggest that smaller MPs appear more toxic to digestion, metabolism and growth of animals.
Collapse
Affiliation(s)
- Kun Xiao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yishuai Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
4
|
Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A, Phung DT, Sadler R, Connell D. Exposure Routes and Health Risks Associated with Pesticide Application. TOXICS 2022; 10:335. [PMID: 35736943 PMCID: PMC9231402 DOI: 10.3390/toxics10060335] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Pesticides play an important role in agricultural development. However, pesticide application can result in both acute and chronic human toxicities, and the adverse effects of pesticides on the environment and human health remain a serious problem. There is therefore a need to discuss the application methods for pesticides, the routes of pesticide exposure, and the health risks posed by pesticide application. The health problems related to pesticide application and exposure in developing countries are of particular concern. The purpose of this paper is to provide scientific information for policymakers in order to allow the development of proper pesticide application technics and methods to minimize pesticide exposure and the adverse health effects on both applicators and communities. Studies indicate that there are four main pesticide application methods, including hydraulic spraying, backpack spraying, basal trunk spraying, and aerial spraying. Pesticide application methods are mainly selected by considering the habits of target pests, the characteristics of target sites, and the properties of pesticides. Humans are directly exposed to pesticides in occupational, agricultural, and household activities and are indirectly exposed to pesticides via environmental media, including air, water, soil, and food. Human exposure to pesticides occurs mainly through dermal, oral, and respiratory routes. People who are directly and/or indirectly exposed to pesticides may contract acute toxicity effects and chronic diseases. Although no segment of the general population is completely protected against exposure to pesticides and their potentially serious health effects, a disproportionate burden is shouldered by people in developing countries. Both deterministic and probabilistic human health risk assessments have their advantages and disadvantages and both types of methods should be comprehensively implemented in research on exposure and human health risk assessment. Equipment for appropriate pesticide application is important for application efficiency to minimize the loss of spray solution as well as reduce pesticide residuals in the environment and adverse human health effects due to over-spraying and residues. Policymakers should implement various useful measures, such as integrated pest management (IPM) laws that prohibit the use of pesticides with high risks and the development of a national implementation plan (NIP) to reduce the adverse effects of pesticides on the environment and on human health.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Hongying Li
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China;
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Shuangmei Tong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Qiming Jimmy Yu
- School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia;
| | - Huada Daniel Ruan
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China;
| | - Albert Atabila
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana;
| | - Dung Tri Phung
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Ross Sadler
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia;
| |
Collapse
|