1
|
Das T, Bhattacharya A, Jha T, Gayen S. Exploration of Fingerprints and Data Mining-based Prediction of Some Bioactive Compounds from Allium sativum as Histone Deacetylase 9 (HDAC9) Inhibitors. Curr Comput Aided Drug Des 2025; 21:270-284. [PMID: 38321909 DOI: 10.2174/0115734099282303240126061624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Histone deacetylase 9 (HDAC9) is an important member of the class IIa family of histone deacetylases. It is well established that over-expression of HDAC9 causes various types of cancers including gastric cancer, breast cancer, ovarian cancer, liver cancer, lung cancer, lymphoblastic leukaemia, etc. The important role of HDAC9 is also recognized in the development of bone, cardiac muscles, and innate immunity. Thus, it will be beneficial to find out the important structural attributes of HDAC9 inhibitors for developing selective HDAC9 inhibitors with higher potency. METHODS The classification QSAR-based methods namely Bayesian classification and recursive partitioning method were applied to a dataset consisting of HADC9 inhibitors. The structural features strongly suggested that sulphur-containing compounds can be a good choice for HDAC9 inhibition. For this reason, these models were applied further to screen some natural compounds from Allium sativum. The screened compounds were further accessed for the ADME properties and docked in the homology-modelled structure of HDAC9 in order to find important amino acids for the interaction. The best-docked compound was considered for molecular dynamics (MD) simulation study. RESULTS The classification models have identified good and bad fingerprints for HDAC9 inhibition. The screened compounds like ajoene, 1,2 vinyl dithiine, diallyl disulphide and diallyl trisulphide had been identified as compounds having potent HDAC9 inhibitory activity. The results from ADME and molecular docking study of these compounds show the binding interaction inside the active site of the HDAC9. The best-docked compound ajoene shows satisfactory results in terms of different validation parameters of MD simulation study. CONCLUSION This in-silico modelling study has identified the natural potential lead (s) from Allium sativum. Specifically, the ajoene with the best in-silico features can be considered for further in-vitro and in-vivo investigation to establish as potential HDAC9 inhibitors.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Arijit Bhattacharya
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Ortega-Vallbona R, Palomino-Schätzlein M, Tolosa L, Benfenati E, Ecker GF, Gozalbes R, Serrano-Candelas E. Computational Strategies for Assessing Adverse Outcome Pathways: Hepatic Steatosis as a Case Study. Int J Mol Sci 2024; 25:11154. [PMID: 39456937 PMCID: PMC11508863 DOI: 10.3390/ijms252011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The evolving landscape of chemical risk assessment is increasingly focused on developing tiered, mechanistically driven approaches that avoid the use of animal experiments. In this context, adverse outcome pathways have gained importance for evaluating various types of chemical-induced toxicity. Using hepatic steatosis as a case study, this review explores the use of diverse computational techniques, such as structure-activity relationship models, quantitative structure-activity relationship models, read-across methods, omics data analysis, and structure-based approaches to fill data gaps within adverse outcome pathway networks. Emphasizing the regulatory acceptance of each technique, we examine how these methodologies can be integrated to provide a comprehensive understanding of chemical toxicity. This review highlights the transformative impact of in silico techniques in toxicology, proposing guidelines for their application in evidence gathering for developing and filling data gaps in adverse outcome pathway networks. These guidelines can be applied to other cases, advancing the field of toxicological risk assessment.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Martina Palomino-Schätzlein
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos, 28029 Madrid, Spain
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Wien, Austria;
| | - Rafael Gozalbes
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
- MolDrug AI Systems S.L., Olimpia Arozena Torres 45, 46108 Valencia, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| |
Collapse
|
3
|
Najjar A, Lange D, Géniès C, Kuehnl J, Zifle A, Jacques C, Fabian E, Hewitt N, Schepky A. Development and validation of PBPK models for genistein and daidzein for use in a next-generation risk assessment. Front Pharmacol 2024; 15:1421650. [PMID: 39421667 PMCID: PMC11483610 DOI: 10.3389/fphar.2024.1421650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction All cosmetic ingredients must be evaluated for their safety to consumers. In the absence of in vivo data, systemic concentrations of ingredients can be predicted using Physiologically based Pharmacokinetic (PBPK) models. However, more examples are needed to demonstrate how they can be validated and applied in Next-Generation Risk Assessments (NGRA) of cosmetic ingredients. We used a bottom-up approach to develop human PBPK models for genistein and daidzein for a read-across NGRA, whereby genistein was the source chemical for the target chemical, daidzein. Methods An oral rat PBPK model for genistein was built using PK-Sim® and in vitro ADME input data. This formed the basis of the daidzein oral rat PBPK model, for which chemical-specific input parameters were used. Rat PBPK models were then converted to human models using human-specific physiological parameters and human in vitro ADME data. In vitro skin metabolism and penetration data were used to build the dermal module to represent the major route of exposure to cosmetics. Results The initial oral rat model for genistein was qualified since it predicted values within 2-fold of measured in vivo PK values. This was used to predict plasma concentrations from the in vivo NOAEL for genistein to set test concentrations in bioassays. Intrinsic hepatic clearance and unbound fractions in plasma were identified as sensitive parameters impacting the predicted Cmax values. Sensitivity and uncertainty analyses indicated the developed PBPK models had a moderate level of confidence. An important aspect of the development of the dermal module was the implementation of first-pass metabolism, which was extensive for both chemicals. The final human PBPK model for daidzein was used to convert the in vitro PoD of 33 nM (from an estrogen receptor transactivation assay) to an external dose of 0.2% in a body lotion formulation. Conclusion PBPK models for genistein and daidzein were developed as a central component of an NGRA read-across case study. This will help to gain regulatory confidence in the use of PBPK models, especially for cosmetic ingredients.
Collapse
Affiliation(s)
| | | | - C. Géniès
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | - A. Zifle
- Kao Germany GmbH, Darmstadt, Germany
| | - C. Jacques
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | | | | |
Collapse
|
4
|
An S, Park IG, Hwang SY, Gong J, Lee Y, Ahn S, Noh M. Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist. Chem Res Toxicol 2024; 37:1344-1355. [PMID: 39095321 DOI: 10.1021/acs.chemrestox.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This study introduces a novel cheminformatic read-across approach designed to identify potential environmental obesogens, substances capable of disrupting metabolism and inducing obesity by mainly influencing nuclear hormone receptors (NRs). Leveraging real-valued two-dimensional features derived from chemical fingerprints of 8435 Tox21 compounds, cluster analysis and subsequent statistical testing revealed 385 clusters enriched with compounds associated with specific NR targets. Notably, one cluster exhibited selective enrichment in peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, prominently featuring methoxy cinnamate ultraviolet (UV) filters and obesogen-related compounds. Experimental validation confirmed that 2-ethoxyethyl 4-methoxycinnamate, an organic UV filter cinoxate, could selectively bind to PPARγ (Ki = 18.0 μM), eliciting an obesogenic phenotype in human bone marrow-derived mesenchymal stem cells during adipogenic differentiation. Molecular docking and further experiments identified cinoxate as a potent PPARγ full agonist, demonstrating a preference for coactivator SRC3 recruitment. Moreover, cinoxate upregulated transcription levels of genes encoding lipid metabolic enzymes in normal human epidermal keratinocytes as primary cells exposed during clinical usage. This study provides compelling evidence for the efficacy of cheminformatic read-across analysis in prioritizing potential obesogens, showcasing its utility in unveiling cinoxate as an obesogenic PPARγ agonist.
Collapse
Affiliation(s)
- Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In Guk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Moreira-Filho JT, Ranganath D, Conway M, Schmitt C, Kleinstreuer N, Mansouri K. Democratizing cheminformatics: interpretable chemical grouping using an automated KNIME workflow. J Cheminform 2024; 16:101. [PMID: 39152469 PMCID: PMC11330086 DOI: 10.1186/s13321-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
With the increased availability of chemical data in public databases, innovative techniques and algorithms have emerged for the analysis, exploration, visualization, and extraction of information from these data. One such technique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical grouping often require specialized programming skills or the use of commercial software packages. To address these challenges, we developed a user-friendly chemical grouping workflow implemented in KNIME, a free, open-source, low/no-code, data analytics platform. The workflow serves as an all-encompassing tool, expertly incorporating a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperparameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descriptors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings. The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal as a web application. It incorporates interactive interfaces and guides to assist users in a step-by-step manner. We demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.Scientific contributionsThis work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by integrating a user-friendly graphical interface that eliminates the need for extensive programming skills. This workflow uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimensionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing the usability of the tool and interpretability of the results.
Collapse
Affiliation(s)
- José T Moreira-Filho
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - Dhruv Ranganath
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mike Conway
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Charles Schmitt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kamel Mansouri
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
6
|
Najjar A, Kühnl J, Lange D, Géniès C, Jacques C, Fabian E, Zifle A, Hewitt NJ, Schepky A. Next-generation risk assessment read-across case study: application of a 10-step framework to derive a safe concentration of daidzein in a body lotion. Front Pharmacol 2024; 15:1421601. [PMID: 38962304 PMCID: PMC11220827 DOI: 10.3389/fphar.2024.1421601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only in vitro data were used for daidzein, while in vitro and legacy in vivo data for genistein were considered. Methods: The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and in vitro biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.e., interaction with molecular targets), toxicogenomics and EATS assays (endocrine disruption endpoints). Whole body rat and human PBPK models were used to convert external doses of genistein to plasma concentrations and in vitro Points of Departure (PoD) to external doses. The PBPK human dermal module was refined using in vitro human skin metabolism and penetration data. Results: The most relevant endpoint for daidzein was from the ERα assay (Lowest Observed Effective Concentration was 100 ± 0.0 nM), which was converted to an in vitro PoD of 33 nM. After application of a safety factor of 3.3 for intra-individual variability, the safe concentration of daidzein was estimated to be 10 nM. This was extrapolated to an external dose of 0.5 μg/cm2 for a body lotion and face cream, equating to a concentration of 0.1%. Discussion: When in vitro PoD of 33 nM for daidzein was converted to an external oral dose in rats, the value correlated with the in vivo NOAEL. This increased confidence that the rat oral PBPK model provided accurate estimates of internal and external exposure and that the in vitro PoD was relevant in the safety assessment of both chemicals. When plasma concentrations estimated from applications of 0.1% and 0.02% daidzein were used to calculate bioactivity exposure ratios, values were >1, indicating a good margin between exposure and concentrations causing adverse effects. In conclusion, this case study highlights the use of NAMs in a 10-step tiered workflow to conclude that the highest safe concentration of daidzein in a body lotion is 0.1%.
Collapse
Affiliation(s)
| | | | | | - Camille Géniès
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | - Carine Jacques
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
7
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Klambauer G, Clevert DA, Shah I, Benfenati E, Tetko IV. Introduction to the Special Issue: AI Meets Toxicology. Chem Res Toxicol 2023; 36:1163-1167. [PMID: 37599584 DOI: 10.1021/acs.chemrestox.3c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Günter Klambauer
- ELLIS Unit Linz, LIT AI Lab & Institute for Machine Learning, Johannes Kepler University Linz, Altenbergerstraße 69, Linz 4040, Austria
| | - Djork-Arné Clevert
- Machine Learning Research, Pfizer Worldwide Research Development and Medical, Linkstr. 10, Berlin 10785, Germany
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Igor V Tetko
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
- BIGCHEM GmbH, Valerystr. 49, 85716 Unterschleißheim, Germany
| |
Collapse
|