• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5146460)   Today's Articles (11)
For: Banerjee A, Roy K. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients. Chem Res Toxicol 2023;36:1518-1531. [PMID: 37584642 DOI: 10.1021/acs.chemrestox.3c00155] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Number Cited by Other Article(s)
1
Banerjee A, Roy K. The multiclass ARKA framework for developing improved q-RASAR models for environmental toxicity endpoints. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025;27:1229-1243. [PMID: 40227888 DOI: 10.1039/d5em00068h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
2
Ghosh S, Pandey SK, Roy K. Predictive classification-based read-across for diverse functional vitiligo-linked chemical exposomes (ViCE): A new approach for the assessment of chemical safety for the vitiligo disease in humans. Toxicol In Vitro 2025;104:106018. [PMID: 39922550 DOI: 10.1016/j.tiv.2025.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
3
Hossain MM, Roy K. The development of classification-based machine-learning models for the toxicity assessment of chemicals associated with plastic packaging. JOURNAL OF HAZARDOUS MATERIALS 2025;484:136702. [PMID: 39637787 DOI: 10.1016/j.jhazmat.2024.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
4
Dasgupta I, Barik H, Gayen S. Modelling of intrinsic membrane permeability of drug molecules by explainable ML-based q-RASPR approach towards better pharmacokinetics and toxicokinetics properties. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025;36:127-143. [PMID: 40190164 DOI: 10.1080/1062936x.2025.2478118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/04/2025] [Indexed: 05/17/2025]
5
Banerjee A, Roy K. Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs. Sci Rep 2025;15:808. [PMID: 39755865 PMCID: PMC11700179 DOI: 10.1038/s41598-024-85063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]  Open
6
Das S, Bhattacharjee A, Ojha PK. First report on q-RASTR modelling of hazardous dose (HD5) for acute toxicity of pesticides: an efficient and reliable approach towards safeguarding the sensitive avian species. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025;36:39-55. [PMID: 39931931 DOI: 10.1080/1062936x.2025.2462559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
7
Khatun S, Dasgupta I, Sen S, Amin SA, Qureshi IA, Jha T, Gayen S. Histone deacetylase 8 in focus: Decoding structural prerequisites for innovative epigenetic intervention beyond hydroxamates. Int J Biol Macromol 2025;284:138119. [PMID: 39608552 DOI: 10.1016/j.ijbiomac.2024.138119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
8
Pandey SK, Roy K. Development of hybrid models by the integration of the read-across hypothesis with the QSAR framework for the assessment of developmental and reproductive toxicity (DART) tested according to OECD TG 414. Toxicol Rep 2024;13:101822. [PMID: 39649380 PMCID: PMC11621937 DOI: 10.1016/j.toxrep.2024.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]  Open
9
Banerjee A, Kar S, Roy K, Patlewicz G, Charest N, Benfenati E, Cronin MTD. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Crit Rev Toxicol 2024;54:659-684. [PMID: 39225123 PMCID: PMC12010357 DOI: 10.1080/10408444.2024.2386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
10
Banerjee A, Roy K. The application of chemical similarity measures in an unconventional modeling framework c-RASAR along with dimensionality reduction techniques to a representative hepatotoxicity dataset. Sci Rep 2024;14:20812. [PMID: 39242880 PMCID: PMC11379871 DOI: 10.1038/s41598-024-71892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]  Open
11
Banerjee A, Roy K. How to correctly develop q-RASAR models for predictive cheminformatics. Expert Opin Drug Discov 2024;19:1017-1022. [PMID: 38966910 DOI: 10.1080/17460441.2024.2376651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
12
An S, Park IG, Hwang SY, Gong J, Lee Y, Ahn S, Noh M. Cheminformatic Read-Across Approach Revealed Ultraviolet Filter Cinoxate as an Obesogenic Peroxisome Proliferator-Activated Receptor γ Agonist. Chem Res Toxicol 2024;37:1344-1355. [PMID: 39095321 DOI: 10.1021/acs.chemrestox.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
13
Gomatam A, Hirlekar BU, Singh KD, Murty US, Dixit VA. Improved QSAR models for PARP-1 inhibition using data balancing, interpretable machine learning, and matched molecular pair analysis. Mol Divers 2024;28:2135-2152. [PMID: 38374474 DOI: 10.1007/s11030-024-10809-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024]
14
Srisongkram T. DeepRA: A novel deep learning-read-across framework and its application in non-sugar sweeteners mutagenicity prediction. Comput Biol Med 2024;178:108731. [PMID: 38870727 DOI: 10.1016/j.compbiomed.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
15
Khatun S, Dasgupta I, Islam R, Amin SA, Jha T, Dhaked DK, Gayen S. Unveiling critical structural features for effective HDAC8 inhibition: a comprehensive study using quantitative read-across structure-activity relationship (q-RASAR) and pharmacophore modeling. Mol Divers 2024;28:2197-2215. [PMID: 38871969 DOI: 10.1007/s11030-024-10903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
16
Banerjee A, Roy K. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024;26:991-1007. [PMID: 38743054 DOI: 10.1039/d4em00173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
17
Ghosh S, Roy K. Quantitative read-across structure-activity relationship (q-RASAR): A novel approach to estimate the subchronic oral safety (NOAEL) of diverse organic chemicals in rats. Toxicology 2024;505:153824. [PMID: 38705560 DOI: 10.1016/j.tox.2024.153824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
18
Zhou Y, Wang Z, Huang Z, Li W, Chen Y, Yu X, Tang Y, Liu G. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches. J Appl Toxicol 2024;44:892-907. [PMID: 38329145 DOI: 10.1002/jat.4586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
19
Kumar V, Banerjee A, Roy K. Breaking the Barriers: Machine-Learning-Based c-RASAR Approach for Accurate Blood-Brain Barrier Permeability Prediction. J Chem Inf Model 2024;64:4298-4309. [PMID: 38700741 DOI: 10.1021/acs.jcim.4c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
20
Pore S, Banerjee A, Roy K. Application of machine learning-based read-across structure-property relationship (RASPR) as a new tool for predictive modelling: Prediction of power conversion efficiency (PCE) for selected classes of organic dyes in dye-sensitized solar cells (DSSCs). Mol Inform 2024;43:e202300210. [PMID: 38374528 DOI: 10.1002/minf.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/31/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
21
Wu X, Gong J, Ren S, Tan F, Wang Y, Zhao H. A machine learning-based QSAR model reveals important molecular features for understanding the potential inhibition mechanism of ionic liquids to acetylcholinesterase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;915:169974. [PMID: 38199350 DOI: 10.1016/j.scitotenv.2024.169974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
22
Huang Z, Yu J, He W, Yu J, Deng S, Yang C, Zhu W, Shao X. AI-enhanced chemical paradigm: From molecular graphs to accurate prediction and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024;465:133355. [PMID: 38198864 DOI: 10.1016/j.jhazmat.2023.133355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
23
Banjare P, Singh R, Pandey NK, Matore BW, Murmu A, Singh J, Roy PP. In silico soil degradation and ecotoxicity analysis of veterinary pharmaceuticals on terrestrial species: first report. Toxicol Res (Camb) 2024;13:tfae020. [PMID: 38496320 PMCID: PMC10939401 DOI: 10.1093/toxres/tfae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024]  Open
24
Pandey NK, Murmu A, Banjare P, Matore BW, Singh J, Roy PP. Integrated predictive QSAR, Read Across, and q-RASAR analysis for diverse agrochemical phytotoxicity in oat and corn: A consensus-based approach for risk assessment and prioritization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;31:12371-12386. [PMID: 38228952 DOI: 10.1007/s11356-024-31872-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
25
Ahmadi M, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F. Toxicity prediction of nanoparticles using machine learning approaches. Toxicology 2024;501:153697. [PMID: 38056590 DOI: 10.1016/j.tox.2023.153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
26
Duchowicz PR, Fioressi SE, Bacelo DE, Quispe AQ, Yapu EL, Castañeta H. QSPR predicting the vapor pressure of pesticides into high/low volatility classes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;31:1395-1402. [PMID: 38038924 DOI: 10.1007/s11356-023-31235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
27
Ghosh V, Bhattacharjee A, Kumar A, Ojha PK. q-RASTR modelling for prediction of diverse toxic chemicals towards T. pyriformis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024;35:11-30. [PMID: 38193248 DOI: 10.1080/1062936x.2023.2298452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
28
Srisongkram T. Ensemble Quantitative Read-Across Structure-Activity Relationship Algorithm for Predicting Skin Cytotoxicity. Chem Res Toxicol 2023;36:1961-1972. [PMID: 38047785 DOI: 10.1021/acs.chemrestox.3c00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
29
Baran K, Kloskowski A. Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction. J Phys Chem B 2023;127:10542-10555. [PMID: 38015981 PMCID: PMC10726349 DOI: 10.1021/acs.jpcb.3c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
30
Pandey SK, Roy K. Development of a read-across-derived classification model for the predictions of mutagenicity data and its comparison with traditional QSAR models and expert systems. Toxicology 2023;500:153676. [PMID: 37993082 DOI: 10.1016/j.tox.2023.153676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
31
Banerjee A, Roy K. Read-across-based intelligent learning: development of a global q-RASAR model for the efficient quantitative predictions of skin sensitization potential of diverse organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023;25:1626-1644. [PMID: 37682520 DOI: 10.1039/d3em00322a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA